A linear complexity phasing method for thousands of genomes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Olivier Delaneau, Jonathan Marchini, Jean-François Zagury

ABSTRACT

Human-disease etiology can be better understood with phase information about diploid sequences. We present a method for estimating haplotypes, using genotype data from unrelated samples or small nuclear families, that leads to improved accuracy and speed compared to several widely used methods. The method, segmented haplotype estimation and imputation tool (SHAPEIT), scales linearly with the number of haplotypes used in each iteration and can be run efficiently on whole chromosomes. More... »

PAGES

179

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.1785

DOI

http://dx.doi.org/10.1038/nmeth.1785

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002640757

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22138821


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Chaire de Bioinformatique, Laboratoire G\u00e9nomique, Bioinformatique, et Applications (Equipe d'accueil 4627), Conservatoire National des Arts et M\u00e9tiers, Paris, France.", 
            "Department of Statistics, University of Oxford, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delaneau", 
        "givenName": "Olivier", 
        "id": "sg:person.01225067535.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225067535.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Statistics, University of Oxford, Oxford, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marchini", 
        "givenName": "Jonathan", 
        "id": "sg:person.013342243720.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013342243720.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Conservatoire National des Arts et M\u00e9tiers", 
          "id": "https://www.grid.ac/institutes/grid.36823.3c", 
          "name": [
            "Chaire de Bioinformatique, Laboratoire G\u00e9nomique, Bioinformatique, et Applications (Equipe d'accueil 4627), Conservatoire National des Arts et M\u00e9tiers, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zagury", 
        "givenName": "Jean-Fran\u00e7ois", 
        "id": "sg:person.0677370535.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677370535.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1086/500808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007874903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009739594", 
          "https://doi.org/10.1038/nrg2796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009739594", 
          "https://doi.org/10.1038/nrg2796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/319501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027413555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036876479", 
          "https://doi.org/10.1038/nature06250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039500245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gepi.20533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039500245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043446290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046979341", 
          "https://doi.org/10.1038/ng2088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051134045", 
          "https://doi.org/10.1038/nature06258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/521987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052475645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/502802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058783626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.18626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076619967", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "Human-disease etiology can be better understood with phase information about diploid sequences. We present a method for estimating haplotypes, using genotype data from unrelated samples or small nuclear families, that leads to improved accuracy and speed compared to several widely used methods. The method, segmented haplotype estimation and imputation tool (SHAPEIT), scales linearly with the number of haplotypes used in each iteration and can be run efficiently on whole chromosomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth.1785", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2757227", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3636942", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A linear complexity phasing method for thousands of genomes", 
    "pagination": "179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c92b1c877298dfc9aabfccb349925de0647537c4741a90df56616e650255e69"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22138821"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.1785"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002640757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.1785", 
      "https://app.dimensions.ai/details/publication/pub.1002640757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmeth.1785"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1785'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1785'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1785'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1785'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      44 URIs      23 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.1785 schema:about N0a2bd00c4ca247f0860cf5308d97cc15
2 N36b7af9dc1aa448eabc2382037f43a82
3 anzsrc-for:06
4 anzsrc-for:0604
5 schema:author N5f40b3c14eba4e30949753fdeb95c9a1
6 schema:citation sg:pub.10.1038/nature06250
7 sg:pub.10.1038/nature06258
8 sg:pub.10.1038/ng2088
9 sg:pub.10.1038/nrg2796
10 https://app.dimensions.ai/details/publication/pub.1076619967
11 https://doi.org/10.1002/gepi.20533
12 https://doi.org/10.1086/319501
13 https://doi.org/10.1086/500808
14 https://doi.org/10.1086/502802
15 https://doi.org/10.1086/521987
16 https://doi.org/10.1109/5.18626
17 https://doi.org/10.1126/science.1117196
18 https://doi.org/10.1371/journal.pgen.1000529
19 schema:datePublished 2012-02
20 schema:datePublishedReg 2012-02-01
21 schema:description Human-disease etiology can be better understood with phase information about diploid sequences. We present a method for estimating haplotypes, using genotype data from unrelated samples or small nuclear families, that leads to improved accuracy and speed compared to several widely used methods. The method, segmented haplotype estimation and imputation tool (SHAPEIT), scales linearly with the number of haplotypes used in each iteration and can be run efficiently on whole chromosomes.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N066571896957418a9032400fde5a09d1
26 N659bfdfdf8ea4904b45c21760686dd95
27 sg:journal.1033763
28 schema:name A linear complexity phasing method for thousands of genomes
29 schema:pagination 179
30 schema:productId N52f3b023ebfd44959c13058cc70274dd
31 N68c7b4f9470c40c49c5283160ac48ab4
32 N9021396a29e54260ab7d961c7261f10a
33 Nb9aae0cf543c40b0ba59351442a28e56
34 Nca786452f95a4aa19483056e3fb63edb
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002640757
36 https://doi.org/10.1038/nmeth.1785
37 schema:sdDatePublished 2019-04-10T16:30
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N8e9433a7aa694206973de5439b09b41f
40 schema:url https://www.nature.com/articles/nmeth.1785
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N066571896957418a9032400fde5a09d1 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 N0a2bd00c4ca247f0860cf5308d97cc15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
47 schema:name Haplotypes
48 rdf:type schema:DefinedTerm
49 N36b7af9dc1aa448eabc2382037f43a82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Genome
51 rdf:type schema:DefinedTerm
52 N52f3b023ebfd44959c13058cc70274dd schema:name nlm_unique_id
53 schema:value 101215604
54 rdf:type schema:PropertyValue
55 N5f40b3c14eba4e30949753fdeb95c9a1 rdf:first sg:person.01225067535.64
56 rdf:rest Nd90082b507ce434d9f39bb00e57ef438
57 N659bfdfdf8ea4904b45c21760686dd95 schema:volumeNumber 9
58 rdf:type schema:PublicationVolume
59 N68c7b4f9470c40c49c5283160ac48ab4 schema:name doi
60 schema:value 10.1038/nmeth.1785
61 rdf:type schema:PropertyValue
62 N6cd1e3980b8e406c85c46ce899157201 rdf:first sg:person.0677370535.71
63 rdf:rest rdf:nil
64 N8e9433a7aa694206973de5439b09b41f schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N9021396a29e54260ab7d961c7261f10a schema:name dimensions_id
67 schema:value pub.1002640757
68 rdf:type schema:PropertyValue
69 Nb9aae0cf543c40b0ba59351442a28e56 schema:name pubmed_id
70 schema:value 22138821
71 rdf:type schema:PropertyValue
72 Nca786452f95a4aa19483056e3fb63edb schema:name readcube_id
73 schema:value 0c92b1c877298dfc9aabfccb349925de0647537c4741a90df56616e650255e69
74 rdf:type schema:PropertyValue
75 Nd90082b507ce434d9f39bb00e57ef438 rdf:first sg:person.013342243720.01
76 rdf:rest N6cd1e3980b8e406c85c46ce899157201
77 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
78 schema:name Biological Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
81 schema:name Genetics
82 rdf:type schema:DefinedTerm
83 sg:grant.2757227 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1785
84 rdf:type schema:MonetaryGrant
85 sg:grant.3636942 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1785
86 rdf:type schema:MonetaryGrant
87 sg:journal.1033763 schema:issn 1548-7091
88 1548-7105
89 schema:name Nature Methods
90 rdf:type schema:Periodical
91 sg:person.01225067535.64 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
92 schema:familyName Delaneau
93 schema:givenName Olivier
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225067535.64
95 rdf:type schema:Person
96 sg:person.013342243720.01 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
97 schema:familyName Marchini
98 schema:givenName Jonathan
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013342243720.01
100 rdf:type schema:Person
101 sg:person.0677370535.71 schema:affiliation https://www.grid.ac/institutes/grid.36823.3c
102 schema:familyName Zagury
103 schema:givenName Jean-François
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677370535.71
105 rdf:type schema:Person
106 sg:pub.10.1038/nature06250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036876479
107 https://doi.org/10.1038/nature06250
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
110 https://doi.org/10.1038/nature06258
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/ng2088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046979341
113 https://doi.org/10.1038/ng2088
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nrg2796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009739594
116 https://doi.org/10.1038/nrg2796
117 rdf:type schema:CreativeWork
118 https://app.dimensions.ai/details/publication/pub.1076619967 schema:CreativeWork
119 https://doi.org/10.1002/gepi.20533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039500245
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1086/319501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027413555
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1086/500808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874903
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1086/502802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058783626
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1086/521987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475645
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/5.18626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178979
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.1117196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452558
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1371/journal.pgen.1000529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043446290
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.36823.3c schema:alternateName Conservatoire National des Arts et Métiers
136 schema:name Chaire de Bioinformatique, Laboratoire Génomique, Bioinformatique, et Applications (Equipe d'accueil 4627), Conservatoire National des Arts et Métiers, Paris, France.
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
139 schema:name Chaire de Bioinformatique, Laboratoire Génomique, Bioinformatique, et Applications (Equipe d'accueil 4627), Conservatoire National des Arts et Métiers, Paris, France.
140 Department of Statistics, University of Oxford, Oxford, UK.
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...