Microbial community resemblance methods differ in their ability to detect biologically relevant patterns View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10

AUTHORS

Justin Kuczynski, Zongzhi Liu, Catherine Lozupone, Daniel McDonald, Noah Fierer, Rob Knight

ABSTRACT

High-throughput sequencing methods enable characterization of microbial communities in a wide range of environments on an unprecedented scale. However, insight into microbial community composition is limited by our ability to detect patterns in this flood of sequences. Here we compare the performance of 51 analysis techniques using real and simulated bacterial 16S rRNA pyrosequencing datasets containing either clustered samples or samples arrayed across environmental gradients. We found that many diversity patterns were evident with severely undersampled communities and that methods varied widely in their ability to detect gradients and clusters. Chi-squared distances and Pearson correlation distances performed especially well for detecting gradients, whereas Gower and Canberra distances performed especially well for detecting clusters. These results also provide a basis for understanding tradeoffs between number of samples and depth of coverage, tradeoffs that are important to consider when designing studies to characterize microbial communities. More... »

PAGES

813

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmeth.1499

DOI

http://dx.doi.org/10.1038/nmeth.1499

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006708540

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20818378


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacteria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbiological Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Principal Component Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuczynski", 
        "givenName": "Justin", 
        "id": "sg:person.01242576526.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242576526.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zongzhi", 
        "id": "sg:person.0711721257.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711721257.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lozupone", 
        "givenName": "Catherine", 
        "id": "sg:person.0672337357.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDonald", 
        "givenName": "Daniel", 
        "id": "sg:person.01324411177.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cooperative Institute for Research in Environmental Sciences", 
          "id": "https://www.grid.ac/institutes/grid.464551.7", 
          "name": [
            "Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA.", 
            "Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fierer", 
        "givenName": "Noah", 
        "id": "sg:person.01061615031.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061615031.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA.", 
            "Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Rob", 
        "id": "sg:person.016311745377.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.soilbio.2010.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005880962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.085464.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008175546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1110591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008274652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009917183", 
          "https://doi.org/10.1038/nature06244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.57.030502.090759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013011587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015675255", 
          "https://doi.org/10.1038/nrmicro1978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019669855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020560324", 
          "https://doi.org/10.1038/ismej.2010.58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004420100716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021940115", 
          "https://doi.org/10.1007/s004420100716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.mi.31.100177.000543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024369610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024882111", 
          "https://doi.org/10.1038/ismej.2009.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024882111", 
          "https://doi.org/10.1038/ismej.2009.97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00038687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028140832", 
          "https://doi.org/10.1007/bf00038687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00038687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028140832", 
          "https://doi.org/10.1007/bf00038687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00207713-44-4-846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028445531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170002", 
          "https://doi.org/10.1038/nature07540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2008.00111.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035074213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-8-r171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036049247", 
          "https://doi.org/10.1186/gb-2007-8-8-r171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037217848", 
          "https://doi.org/10.1007/bf00048870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037217848", 
          "https://doi.org/10.1007/bf00048870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0902366106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038315766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-5-210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123396", 
          "https://doi.org/10.1186/gb-2010-11-5-210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042740345", 
          "https://doi.org/10.1038/nmeth.1184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00335-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043659253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0807920105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044575861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00038690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044980959", 
          "https://doi.org/10.1007/bf00038690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00038690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044980959", 
          "https://doi.org/10.1007/bf00038690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1155725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047129566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1000162107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047845298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706625104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051890432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6941.2007.00375.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053205737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "High-throughput sequencing methods enable characterization of microbial communities in a wide range of environments on an unprecedented scale. However, insight into microbial community composition is limited by our ability to detect patterns in this flood of sequences. Here we compare the performance of 51 analysis techniques using real and simulated bacterial 16S rRNA pyrosequencing datasets containing either clustered samples or samples arrayed across environmental gradients. We found that many diversity patterns were evident with severely undersampled communities and that methods varied widely in their ability to detect gradients and clusters. Chi-squared distances and Pearson correlation distances performed especially well for detecting gradients, whereas Gower and Canberra distances performed especially well for detecting clusters. These results also provide a basis for understanding tradeoffs between number of samples and depth of coverage, tradeoffs that are important to consider when designing studies to characterize microbial communities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmeth.1499", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2436201", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2529347", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691272", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033763", 
        "issn": [
          "1548-7091", 
          "1548-7105"
        ], 
        "name": "Nature Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Microbial community resemblance methods differ in their ability to detect biologically relevant patterns", 
    "pagination": "813", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ff4950785ce065c206c4066dbe783eee7cfeb7657e27fa1858a5452c58948d0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20818378"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101215604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmeth.1499"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006708540"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmeth.1499", 
      "https://app.dimensions.ai/details/publication/pub.1006708540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmeth.1499"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1499'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1499'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1499'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1499'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      64 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmeth.1499 schema:about N11e433b378e54f2baef8032f0ca39cae
2 N23b29ad0105942dc981e4c5595b90eff
3 N5f116a479fea492ab7a8beb6813bfda0
4 N910868cfc6c84b248998ec59d526c7ce
5 N978a22c9b2c7481680371cd58a7b7025
6 Na625c256c5e14f1f86cdf10d30a441d2
7 Nc698b48ec19b4120a1a6896a9a712538
8 anzsrc-for:06
9 anzsrc-for:0605
10 schema:author N69eeb53bbe4444298ec876b039460388
11 schema:citation sg:pub.10.1007/bf00038687
12 sg:pub.10.1007/bf00038690
13 sg:pub.10.1007/bf00048870
14 sg:pub.10.1007/s004420100716
15 sg:pub.10.1038/ismej.2009.97
16 sg:pub.10.1038/ismej.2010.58
17 sg:pub.10.1038/nature03959
18 sg:pub.10.1038/nature06244
19 sg:pub.10.1038/nature07540
20 sg:pub.10.1038/nmeth.1184
21 sg:pub.10.1038/nrmicro1978
22 sg:pub.10.1186/gb-2007-8-8-r171
23 sg:pub.10.1186/gb-2010-11-5-210
24 https://doi.org/10.1016/j.soilbio.2010.02.009
25 https://doi.org/10.1073/pnas.0706625104
26 https://doi.org/10.1073/pnas.0807920105
27 https://doi.org/10.1073/pnas.0902366106
28 https://doi.org/10.1073/pnas.1000162107
29 https://doi.org/10.1099/00207713-44-4-846
30 https://doi.org/10.1101/gr.085464.108
31 https://doi.org/10.1111/j.1574-6941.2007.00375.x
32 https://doi.org/10.1111/j.1574-6976.2008.00111.x
33 https://doi.org/10.1126/science.1110591
34 https://doi.org/10.1126/science.1155725
35 https://doi.org/10.1126/science.1177486
36 https://doi.org/10.1128/aem.00335-09
37 https://doi.org/10.1146/annurev.mi.31.100177.000543
38 https://doi.org/10.1146/annurev.micro.57.030502.090759
39 schema:datePublished 2010-10
40 schema:datePublishedReg 2010-10-01
41 schema:description High-throughput sequencing methods enable characterization of microbial communities in a wide range of environments on an unprecedented scale. However, insight into microbial community composition is limited by our ability to detect patterns in this flood of sequences. Here we compare the performance of 51 analysis techniques using real and simulated bacterial 16S rRNA pyrosequencing datasets containing either clustered samples or samples arrayed across environmental gradients. We found that many diversity patterns were evident with severely undersampled communities and that methods varied widely in their ability to detect gradients and clusters. Chi-squared distances and Pearson correlation distances performed especially well for detecting gradients, whereas Gower and Canberra distances performed especially well for detecting clusters. These results also provide a basis for understanding tradeoffs between number of samples and depth of coverage, tradeoffs that are important to consider when designing studies to characterize microbial communities.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf Nb5798ef22b2e4d84a08e808a5f954931
46 Nd6939ef2a8464123b933c4c1145f009f
47 sg:journal.1033763
48 schema:name Microbial community resemblance methods differ in their ability to detect biologically relevant patterns
49 schema:pagination 813
50 schema:productId N00e6bbf06ff34aeca4fe20814739d142
51 N5989bd4952c347499c9993313548a4ef
52 N5b65410abd5b432897971f5c1471e9c8
53 N98a0e46a7de748389ce0a57bdf1a51ed
54 Nf1b7b2e455084161931115fdf0d7ce09
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006708540
56 https://doi.org/10.1038/nmeth.1499
57 schema:sdDatePublished 2019-04-10T17:20
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ned28e45d700b4ade8e5747bec84cbff6
60 schema:url https://www.nature.com/articles/nmeth.1499
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N00e6bbf06ff34aeca4fe20814739d142 schema:name dimensions_id
65 schema:value pub.1006708540
66 rdf:type schema:PropertyValue
67 N01761ef725db467ab5b31b3b67b484d6 rdf:first sg:person.016311745377.96
68 rdf:rest rdf:nil
69 N11e433b378e54f2baef8032f0ca39cae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Principal Component Analysis
71 rdf:type schema:DefinedTerm
72 N1678034d59c5497e9c8ece5b951e2763 rdf:first sg:person.01061615031.38
73 rdf:rest N01761ef725db467ab5b31b3b67b484d6
74 N23b29ad0105942dc981e4c5595b90eff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Ecosystem
76 rdf:type schema:DefinedTerm
77 N26942392d82e4da2ad8022ca9b556cab rdf:first sg:person.01324411177.44
78 rdf:rest N1678034d59c5497e9c8ece5b951e2763
79 N5989bd4952c347499c9993313548a4ef schema:name pubmed_id
80 schema:value 20818378
81 rdf:type schema:PropertyValue
82 N5b65410abd5b432897971f5c1471e9c8 schema:name readcube_id
83 schema:value 1ff4950785ce065c206c4066dbe783eee7cfeb7657e27fa1858a5452c58948d0
84 rdf:type schema:PropertyValue
85 N5f116a479fea492ab7a8beb6813bfda0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Cluster Analysis
87 rdf:type schema:DefinedTerm
88 N66c69fa667994f96a8e58a53de67f17a rdf:first sg:person.0711721257.03
89 rdf:rest Nfedb0bd785544378a63df3dc37678421
90 N69eeb53bbe4444298ec876b039460388 rdf:first sg:person.01242576526.02
91 rdf:rest N66c69fa667994f96a8e58a53de67f17a
92 N910868cfc6c84b248998ec59d526c7ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Bacteria
94 rdf:type schema:DefinedTerm
95 N978a22c9b2c7481680371cd58a7b7025 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Computer Simulation
97 rdf:type schema:DefinedTerm
98 N98a0e46a7de748389ce0a57bdf1a51ed schema:name nlm_unique_id
99 schema:value 101215604
100 rdf:type schema:PropertyValue
101 Na625c256c5e14f1f86cdf10d30a441d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Soil Microbiology
103 rdf:type schema:DefinedTerm
104 Nb5798ef22b2e4d84a08e808a5f954931 schema:issueNumber 10
105 rdf:type schema:PublicationIssue
106 Nc698b48ec19b4120a1a6896a9a712538 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Microbiological Techniques
108 rdf:type schema:DefinedTerm
109 Nd6939ef2a8464123b933c4c1145f009f schema:volumeNumber 7
110 rdf:type schema:PublicationVolume
111 Ned28e45d700b4ade8e5747bec84cbff6 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Nf1b7b2e455084161931115fdf0d7ce09 schema:name doi
114 schema:value 10.1038/nmeth.1499
115 rdf:type schema:PropertyValue
116 Nfedb0bd785544378a63df3dc37678421 rdf:first sg:person.0672337357.81
117 rdf:rest N26942392d82e4da2ad8022ca9b556cab
118 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
119 schema:name Biological Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
122 schema:name Microbiology
123 rdf:type schema:DefinedTerm
124 sg:grant.2436201 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1499
125 rdf:type schema:MonetaryGrant
126 sg:grant.2529347 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1499
127 rdf:type schema:MonetaryGrant
128 sg:grant.2691272 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1499
129 rdf:type schema:MonetaryGrant
130 sg:journal.1033763 schema:issn 1548-7091
131 1548-7105
132 schema:name Nature Methods
133 rdf:type schema:Periodical
134 sg:person.01061615031.38 schema:affiliation https://www.grid.ac/institutes/grid.464551.7
135 schema:familyName Fierer
136 schema:givenName Noah
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061615031.38
138 rdf:type schema:Person
139 sg:person.01242576526.02 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
140 schema:familyName Kuczynski
141 schema:givenName Justin
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242576526.02
143 rdf:type schema:Person
144 sg:person.01324411177.44 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
145 schema:familyName McDonald
146 schema:givenName Daniel
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44
148 rdf:type schema:Person
149 sg:person.016311745377.96 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
150 schema:familyName Knight
151 schema:givenName Rob
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
153 rdf:type schema:Person
154 sg:person.0672337357.81 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
155 schema:familyName Lozupone
156 schema:givenName Catherine
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672337357.81
158 rdf:type schema:Person
159 sg:person.0711721257.03 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
160 schema:familyName Liu
161 schema:givenName Zongzhi
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711721257.03
163 rdf:type schema:Person
164 sg:pub.10.1007/bf00038687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028140832
165 https://doi.org/10.1007/bf00038687
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/bf00038690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044980959
168 https://doi.org/10.1007/bf00038690
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf00048870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037217848
171 https://doi.org/10.1007/bf00048870
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s004420100716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021940115
174 https://doi.org/10.1007/s004420100716
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ismej.2009.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024882111
177 https://doi.org/10.1038/ismej.2009.97
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ismej.2010.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020560324
180 https://doi.org/10.1038/ismej.2010.58
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
183 https://doi.org/10.1038/nature03959
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nature06244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009917183
186 https://doi.org/10.1038/nature06244
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature07540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170002
189 https://doi.org/10.1038/nature07540
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nmeth.1184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042740345
192 https://doi.org/10.1038/nmeth.1184
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrmicro1978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015675255
195 https://doi.org/10.1038/nrmicro1978
196 rdf:type schema:CreativeWork
197 sg:pub.10.1186/gb-2007-8-8-r171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036049247
198 https://doi.org/10.1186/gb-2007-8-8-r171
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/gb-2010-11-5-210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123396
201 https://doi.org/10.1186/gb-2010-11-5-210
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.soilbio.2010.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005880962
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.0706625104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051890432
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.0807920105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044575861
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.0902366106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038315766
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.1000162107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047845298
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1099/00207713-44-4-846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028445531
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1101/gr.085464.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008175546
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.1574-6941.2007.00375.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053205737
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.1574-6976.2008.00111.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035074213
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.1110591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008274652
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.1155725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047129566
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.1177486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019669855
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1128/aem.00335-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043659253
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1146/annurev.mi.31.100177.000543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024369610
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1146/annurev.micro.57.030502.090759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013011587
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
234 schema:name Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA.
235 Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA.
236 Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, USA.
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.464551.7 schema:alternateName Cooperative Institute for Research in Environmental Sciences
239 schema:name Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA.
240 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA.
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
243 schema:name Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...