Computational methods for discovering structural variation with next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10-15

AUTHORS

Paul Medvedev, Monica Stanciu, Michael Brudno

ABSTRACT

In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions. More... »

PAGES

s13-s20

References to SciGraph publications

  • 2009-02-23. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data in GENOME BIOLOGY
  • 2006-10-22. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome in NATURE GENETICS
  • 2008-03. 1000 Genomes project in NATURE BIOTECHNOLOGY
  • 2005-10. A haplotype map of the human genome in NATURE
  • 2009-03-27. Evaluation of next generation sequencing platforms for population targeted sequencing studies in GENOME BIOLOGY
  • 2009-05-31. MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions in NATURE METHODS
  • 2005-09. A genome-wide comparison of recent chimpanzee and human segmental duplications in NATURE
  • 2005-12-04. Common deletion polymorphisms in the human genome in NATURE GENETICS
  • 2008-11. Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry in NATURE
  • 2007-06-27. Copy-number variation and association studies of human disease in NATURE GENETICS
  • 2005-12-04. Common deletions and SNPs are in linkage disequilibrium in the human genome in NATURE GENETICS
  • 2005-12-04. A high-resolution survey of deletion polymorphism in the human genome in NATURE GENETICS
  • 2006-11. Global variation in copy number in the human genome in NATURE
  • 2004-08-01. Detection of large-scale variation in the human genome in NATURE GENETICS
  • 2004-03. A census of human cancer genes in NATURE REVIEWS CANCER
  • 2003-07-15. Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster in GENOME BIOLOGY
  • 2009. Identification and Frequency Estimation of Inversion Polymorphisms from Haplotype Data in RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY
  • 2007-06-27. Methods and strategies for analyzing copy number variation using DNA microarrays in NATURE GENETICS
  • 2008-11-30. High-resolution mapping of copy-number alterations with massively parallel sequencing in NATURE METHODS
  • 2005-05-15. Fine-scale structural variation of the human genome in NATURE GENETICS
  • 2007-12-19. Primer: Sequencing—the next generation in NATURE METHODS
  • 2007-06-27. Mutational and selective effects on copy-number variants in the human genome in NATURE GENETICS
  • 2008-10-09. Next-generation DNA sequencing in NATURE BIOTECHNOLOGY
  • 2008-09-07. Systematic assessment of copy number variant detection via genome-wide SNP genotyping in NATURE GENETICS
  • 1998-10. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays in NATURE GENETICS
  • 2008-05. Mapping and sequencing of structural variation from eight human genomes in NATURE
  • 2008-09-07. Integrated detection and population-genetic analysis of SNPs and copy number variation in NATURE GENETICS
  • 2009-08-09. BreakDancer: An algorithm for high resolution mapping of genomic structural variation in NATURE METHODS
  • 2008-04-27. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing in NATURE GENETICS
  • 2006-02. Structural variation in the human genome in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth.1374

    DOI

    http://dx.doi.org/10.1038/nmeth.1374

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019637093

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19844226


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Medvedev", 
            "givenName": "Paul", 
            "id": "sg:person.0722365100.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722365100.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stanciu", 
            "givenName": "Monica", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada", 
                "Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brudno", 
            "givenName": "Michael", 
            "id": "sg:person.01253563237.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrc1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022731034", 
              "https://doi.org/10.1038/nrc1299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031680869", 
              "https://doi.org/10.1186/gb-2009-10-3-r32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0308-256b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045597694", 
              "https://doi.org/10.1038/nbt0308-256b"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02008-7_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006051485", 
              "https://doi.org/10.1007/978-3-642-02008-7_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002416433", 
              "https://doi.org/10.1038/ng1696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014017119", 
              "https://doi.org/10.1038/ng1562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025292804", 
              "https://doi.org/10.1038/ng2080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032451322", 
              "https://doi.org/10.1038/ng1695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925719", 
              "https://doi.org/10.1038/nature07517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409761", 
              "https://doi.org/10.1038/2524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048617134", 
              "https://doi.org/10.1038/nature04000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025333243", 
              "https://doi.org/10.1038/nmeth.1276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-2-r23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048248560", 
              "https://doi.org/10.1186/gb-2009-10-2-r23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014972274", 
              "https://doi.org/10.1038/ng1911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005954516", 
              "https://doi.org/10.1038/nbt1486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000437341", 
              "https://doi.org/10.1038/ng2028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-8-r50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044869885", 
              "https://doi.org/10.1186/gb-2003-4-8-r50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002767840", 
              "https://doi.org/10.1038/ng1416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033454038", 
              "https://doi.org/10.1038/nrg1767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001828025", 
              "https://doi.org/10.1038/ng.236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020581697", 
              "https://doi.org/10.1038/nmeth.1363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023824407", 
              "https://doi.org/10.1038/ng2054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925490", 
              "https://doi.org/10.1038/nature05329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038272226", 
              "https://doi.org/10.1038/nature06862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027902994", 
              "https://doi.org/10.1038/ng1697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049152412", 
              "https://doi.org/10.1038/nmeth1155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047420273", 
              "https://doi.org/10.1038/ng.238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001704732", 
              "https://doi.org/10.1038/nmeth.f.256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047246435", 
              "https://doi.org/10.1038/ng.128"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-10-15", 
        "datePublishedReg": "2009-10-15", 
        "description": "In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmeth.1374", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "next-generation sequencing", 
          "large-scale structural variation", 
          "array comparative genome hybridization", 
          "new sequencing technologies", 
          "comparative genome hybridization", 
          "single nucleotide polymorphism arrays", 
          "paired-end mapping", 
          "copy number variations", 
          "structural variations", 
          "Sanger sequencing data", 
          "sequencing technologies", 
          "genome hybridization", 
          "sequencing data", 
          "short reads", 
          "polymorphism arrays", 
          "sequencing", 
          "genome", 
          "computational methods", 
          "number of studies", 
          "reads", 
          "hybridization", 
          "variation", 
          "large regions", 
          "region", 
          "mapping", 
          "high coverage", 
          "better resolution", 
          "generation", 
          "array", 
          "such methods", 
          "number", 
          "advent", 
          "study", 
          "latest techniques", 
          "future research directions", 
          "resolution", 
          "new generation", 
          "data", 
          "limitations", 
          "research directions", 
          "method", 
          "challenges", 
          "years", 
          "advantages", 
          "technology", 
          "coverage", 
          "survey", 
          "technique", 
          "direction", 
          "strength", 
          "accuracy", 
          "whole-genome array comparative genome hybridization"
        ], 
        "name": "Computational methods for discovering structural variation with next-generation sequencing", 
        "pagination": "s13-s20", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019637093"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth.1374"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19844226"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth.1374", 
          "https://app.dimensions.ai/details/publication/pub.1019637093"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmeth.1374"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'


     

    This table displays all metadata directly associated to this object as RDF triples.

    281 TRIPLES      22 PREDICATES      116 URIs      78 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth.1374 schema:about N0893c7848b0e4e539071ffb7922fcadb
    2 N19955e7aaf904ba0aa9197facf5ad27e
    3 N47c6bca844d749ff934f135a5df4644c
    4 N4a637346b3c8456998eebcff23804446
    5 N5304077536594044924562c4e8038093
    6 Nb29ca917969f4aa6943e95e51c9beff6
    7 Nd8cf0121b42e4a9692e7cc03d2ad8a0a
    8 Nf84b7660e18645378f212e32f25906dc
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N28d82c2b242e473797b4e4d9829b381f
    12 schema:citation sg:pub.10.1007/978-3-642-02008-7_30
    13 sg:pub.10.1038/2524
    14 sg:pub.10.1038/nature04000
    15 sg:pub.10.1038/nature04226
    16 sg:pub.10.1038/nature05329
    17 sg:pub.10.1038/nature06862
    18 sg:pub.10.1038/nature07517
    19 sg:pub.10.1038/nbt0308-256b
    20 sg:pub.10.1038/nbt1486
    21 sg:pub.10.1038/ng.128
    22 sg:pub.10.1038/ng.236
    23 sg:pub.10.1038/ng.238
    24 sg:pub.10.1038/ng1416
    25 sg:pub.10.1038/ng1562
    26 sg:pub.10.1038/ng1695
    27 sg:pub.10.1038/ng1696
    28 sg:pub.10.1038/ng1697
    29 sg:pub.10.1038/ng1911
    30 sg:pub.10.1038/ng2028
    31 sg:pub.10.1038/ng2054
    32 sg:pub.10.1038/ng2080
    33 sg:pub.10.1038/nmeth.1276
    34 sg:pub.10.1038/nmeth.1363
    35 sg:pub.10.1038/nmeth.f.256
    36 sg:pub.10.1038/nmeth1155
    37 sg:pub.10.1038/nrc1299
    38 sg:pub.10.1038/nrg1767
    39 sg:pub.10.1186/gb-2003-4-8-r50
    40 sg:pub.10.1186/gb-2009-10-2-r23
    41 sg:pub.10.1186/gb-2009-10-3-r32
    42 schema:datePublished 2009-10-15
    43 schema:datePublishedReg 2009-10-15
    44 schema:description In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions.
    45 schema:genre article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N51406a953e5b4aa3aec9c5b09b64ef1d
    49 Nff565633c69b443a9ac5317e7fe284f3
    50 sg:journal.1033763
    51 schema:keywords Sanger sequencing data
    52 accuracy
    53 advantages
    54 advent
    55 array
    56 array comparative genome hybridization
    57 better resolution
    58 challenges
    59 comparative genome hybridization
    60 computational methods
    61 copy number variations
    62 coverage
    63 data
    64 direction
    65 future research directions
    66 generation
    67 genome
    68 genome hybridization
    69 high coverage
    70 hybridization
    71 large regions
    72 large-scale structural variation
    73 latest techniques
    74 limitations
    75 mapping
    76 method
    77 new generation
    78 new sequencing technologies
    79 next-generation sequencing
    80 number
    81 number of studies
    82 paired-end mapping
    83 polymorphism arrays
    84 reads
    85 region
    86 research directions
    87 resolution
    88 sequencing
    89 sequencing data
    90 sequencing technologies
    91 short reads
    92 single nucleotide polymorphism arrays
    93 strength
    94 structural variations
    95 study
    96 such methods
    97 survey
    98 technique
    99 technology
    100 variation
    101 whole-genome array comparative genome hybridization
    102 years
    103 schema:name Computational methods for discovering structural variation with next-generation sequencing
    104 schema:pagination s13-s20
    105 schema:productId N8150357c378a458b8699f5342c610405
    106 Nc058776442134973863040966475e4a9
    107 Nc4916695202f48b4a9995c076707985b
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019637093
    109 https://doi.org/10.1038/nmeth.1374
    110 schema:sdDatePublished 2021-12-01T19:21
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N37c1bbfa1a654d9d8d44d237614a2bf9
    113 schema:url https://doi.org/10.1038/nmeth.1374
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N0126ac05c8624ca480377331d9640f12 schema:affiliation grid-institutes:grid.17063.33
    118 schema:familyName Stanciu
    119 schema:givenName Monica
    120 rdf:type schema:Person
    121 N0893c7848b0e4e539071ffb7922fcadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Humans
    123 rdf:type schema:DefinedTerm
    124 N19955e7aaf904ba0aa9197facf5ad27e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Genetic Variation
    126 rdf:type schema:DefinedTerm
    127 N28d82c2b242e473797b4e4d9829b381f rdf:first sg:person.0722365100.46
    128 rdf:rest N6792023cb17a419a98e965a8ad71c1b3
    129 N2fbbba954a77491b99b80abcc54d5243 rdf:first sg:person.01253563237.25
    130 rdf:rest rdf:nil
    131 N37c1bbfa1a654d9d8d44d237614a2bf9 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 N47c6bca844d749ff934f135a5df4644c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Algorithms
    135 rdf:type schema:DefinedTerm
    136 N4a637346b3c8456998eebcff23804446 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Genome
    138 rdf:type schema:DefinedTerm
    139 N51406a953e5b4aa3aec9c5b09b64ef1d schema:volumeNumber 6
    140 rdf:type schema:PublicationVolume
    141 N5304077536594044924562c4e8038093 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Genomics
    143 rdf:type schema:DefinedTerm
    144 N6792023cb17a419a98e965a8ad71c1b3 rdf:first N0126ac05c8624ca480377331d9640f12
    145 rdf:rest N2fbbba954a77491b99b80abcc54d5243
    146 N8150357c378a458b8699f5342c610405 schema:name doi
    147 schema:value 10.1038/nmeth.1374
    148 rdf:type schema:PropertyValue
    149 Nb29ca917969f4aa6943e95e51c9beff6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Base Sequence
    151 rdf:type schema:DefinedTerm
    152 Nc058776442134973863040966475e4a9 schema:name pubmed_id
    153 schema:value 19844226
    154 rdf:type schema:PropertyValue
    155 Nc4916695202f48b4a9995c076707985b schema:name dimensions_id
    156 schema:value pub.1019637093
    157 rdf:type schema:PropertyValue
    158 Nd8cf0121b42e4a9692e7cc03d2ad8a0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Sequence Analysis, DNA
    160 rdf:type schema:DefinedTerm
    161 Nf84b7660e18645378f212e32f25906dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Computational Biology
    163 rdf:type schema:DefinedTerm
    164 Nff565633c69b443a9ac5317e7fe284f3 schema:issueNumber Suppl 11
    165 rdf:type schema:PublicationIssue
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Genetics
    171 rdf:type schema:DefinedTerm
    172 sg:journal.1033763 schema:issn 1548-7091
    173 1548-7105
    174 schema:name Nature Methods
    175 schema:publisher Springer Nature
    176 rdf:type schema:Periodical
    177 sg:person.01253563237.25 schema:affiliation grid-institutes:grid.17063.33
    178 schema:familyName Brudno
    179 schema:givenName Michael
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25
    181 rdf:type schema:Person
    182 sg:person.0722365100.46 schema:affiliation grid-institutes:grid.17063.33
    183 schema:familyName Medvedev
    184 schema:givenName Paul
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722365100.46
    186 rdf:type schema:Person
    187 sg:pub.10.1007/978-3-642-02008-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006051485
    188 https://doi.org/10.1007/978-3-642-02008-7_30
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/2524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409761
    191 https://doi.org/10.1038/2524
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature04000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048617134
    194 https://doi.org/10.1038/nature04000
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
    197 https://doi.org/10.1038/nature04226
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature05329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925490
    200 https://doi.org/10.1038/nature05329
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature06862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038272226
    203 https://doi.org/10.1038/nature06862
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
    206 https://doi.org/10.1038/nature07517
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nbt0308-256b schema:sameAs https://app.dimensions.ai/details/publication/pub.1045597694
    209 https://doi.org/10.1038/nbt0308-256b
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
    212 https://doi.org/10.1038/nbt1486
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ng.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246435
    215 https://doi.org/10.1038/ng.128
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ng.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001828025
    218 https://doi.org/10.1038/ng.236
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ng.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047420273
    221 https://doi.org/10.1038/ng.238
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ng1416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002767840
    224 https://doi.org/10.1038/ng1416
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ng1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014017119
    227 https://doi.org/10.1038/ng1562
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ng1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032451322
    230 https://doi.org/10.1038/ng1695
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/ng1696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002416433
    233 https://doi.org/10.1038/ng1696
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/ng1697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027902994
    236 https://doi.org/10.1038/ng1697
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/ng1911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014972274
    239 https://doi.org/10.1038/ng1911
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/ng2028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000437341
    242 https://doi.org/10.1038/ng2028
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/ng2054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023824407
    245 https://doi.org/10.1038/ng2054
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/ng2080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025292804
    248 https://doi.org/10.1038/ng2080
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nmeth.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333243
    251 https://doi.org/10.1038/nmeth.1276
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nmeth.1363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020581697
    254 https://doi.org/10.1038/nmeth.1363
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nmeth.f.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001704732
    257 https://doi.org/10.1038/nmeth.f.256
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nmeth1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049152412
    260 https://doi.org/10.1038/nmeth1155
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nrc1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022731034
    263 https://doi.org/10.1038/nrc1299
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nrg1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033454038
    266 https://doi.org/10.1038/nrg1767
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/gb-2003-4-8-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044869885
    269 https://doi.org/10.1186/gb-2003-4-8-r50
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1186/gb-2009-10-2-r23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048248560
    272 https://doi.org/10.1186/gb-2009-10-2-r23
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/gb-2009-10-3-r32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031680869
    275 https://doi.org/10.1186/gb-2009-10-3-r32
    276 rdf:type schema:CreativeWork
    277 grid-institutes:grid.17063.33 schema:alternateName Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
    278 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
    279 schema:name Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
    280 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
    281 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...