Computational methods for discovering structural variation with next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10-15

AUTHORS

Paul Medvedev, Monica Stanciu, Michael Brudno

ABSTRACT

In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions. More... »

PAGES

s13-s20

References to SciGraph publications

  • 2009-02-23. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data in GENOME BIOLOGY
  • 2008-03. 1000 Genomes project in NATURE BIOTECHNOLOGY
  • 2005-10. A haplotype map of the human genome in NATURE
  • 2009-03-27. Evaluation of next generation sequencing platforms for population targeted sequencing studies in GENOME BIOLOGY
  • 2009-05-31. MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions in NATURE METHODS
  • 2005-09. A genome-wide comparison of recent chimpanzee and human segmental duplications in NATURE
  • 2005-12-04. Common deletion polymorphisms in the human genome in NATURE GENETICS
  • 2008-11. Accurate whole human genome sequencing using reversible terminator chemistry in NATURE
  • 2007-06-27. Copy-number variation and association studies of human disease in NATURE GENETICS
  • 2005-12-04. Common deletions and SNPs are in linkage disequilibrium in the human genome in NATURE GENETICS
  • 2005-12-04. A high-resolution survey of deletion polymorphism in the human genome in NATURE GENETICS
  • 2006-11. Global variation in copy number in the human genome in NATURE
  • 2004-08-01. Detection of large-scale variation in the human genome in NATURE GENETICS
  • 2004-03. A census of human cancer genes in NATURE REVIEWS CANCER
  • 2003-07-15. Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster in GENOME BIOLOGY
  • 2009. Identification and Frequency Estimation of Inversion Polymorphisms from Haplotype Data in RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY
  • 2007-06-27. Methods and strategies for analyzing copy number variation using DNA microarrays in NATURE GENETICS
  • 2008-11-30. High-resolution mapping of copy-number alterations with massively parallel sequencing in NATURE METHODS
  • 2005-05-15. Fine-scale structural variation of the human genome in NATURE GENETICS
  • 2007-12-19. Primer: Sequencing—the next generation in NATURE METHODS
  • 2007-06-27. Mutational and selective effects on copy-number variants in the human genome in NATURE GENETICS
  • 2008-10-09. Next-generation DNA sequencing in NATURE BIOTECHNOLOGY
  • 2008-09-07. Systematic assessment of copy number variant detection via genome-wide SNP genotyping in NATURE GENETICS
  • 1998-10. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays in NATURE GENETICS
  • 2008-05. Mapping and sequencing of structural variation from eight human genomes in NATURE
  • 2008-09-07. Integrated detection and population-genetic analysis of SNPs and copy number variation in NATURE GENETICS
  • 2009-08-09. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation in NATURE METHODS
  • 2008-04-27. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing in NATURE GENETICS
  • 2006-02. Structural variation in the human genome in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth.1374

    DOI

    http://dx.doi.org/10.1038/nmeth.1374

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019637093

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19844226


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Medvedev", 
            "givenName": "Paul", 
            "id": "sg:person.0722365100.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722365100.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stanciu", 
            "givenName": "Monica", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17063.33", 
              "name": [
                "Department of Computer Science, University of Toronto, Toronto, Ontario, Canada", 
                "Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brudno", 
            "givenName": "Michael", 
            "id": "sg:person.01253563237.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrg1767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033454038", 
              "https://doi.org/10.1038/nrg1767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc1299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022731034", 
              "https://doi.org/10.1038/nrc1299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047246435", 
              "https://doi.org/10.1038/ng.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049152412", 
              "https://doi.org/10.1038/nmeth1155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047420273", 
              "https://doi.org/10.1038/ng.238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-3-r32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031680869", 
              "https://doi.org/10.1186/gb-2009-10-3-r32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027902994", 
              "https://doi.org/10.1038/ng1697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025292804", 
              "https://doi.org/10.1038/ng2080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409761", 
              "https://doi.org/10.1038/2524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000437341", 
              "https://doi.org/10.1038/ng2028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001828025", 
              "https://doi.org/10.1038/ng.236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0308-256b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045597694", 
              "https://doi.org/10.1038/nbt0308-256b"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925719", 
              "https://doi.org/10.1038/nature07517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020581697", 
              "https://doi.org/10.1038/nmeth.1363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-8-r50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044869885", 
              "https://doi.org/10.1186/gb-2003-4-8-r50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002767840", 
              "https://doi.org/10.1038/ng1416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032451322", 
              "https://doi.org/10.1038/ng1695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023824407", 
              "https://doi.org/10.1038/ng2054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025333243", 
              "https://doi.org/10.1038/nmeth.1276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017293702", 
              "https://doi.org/10.1038/nature04226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925490", 
              "https://doi.org/10.1038/nature05329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038272226", 
              "https://doi.org/10.1038/nature06862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02008-7_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006051485", 
              "https://doi.org/10.1007/978-3-642-02008-7_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005954516", 
              "https://doi.org/10.1038/nbt1486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014017119", 
              "https://doi.org/10.1038/ng1562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048617134", 
              "https://doi.org/10.1038/nature04000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002416433", 
              "https://doi.org/10.1038/ng1696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001704732", 
              "https://doi.org/10.1038/nmeth.f.256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-2-r23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048248560", 
              "https://doi.org/10.1186/gb-2009-10-2-r23"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-10-15", 
        "datePublishedReg": "2009-10-15", 
        "description": "In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmeth.1374", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "next-generation sequencing", 
          "large-scale structural variations", 
          "array comparative genome hybridization", 
          "new sequencing technologies", 
          "comparative genome hybridization", 
          "single nucleotide polymorphism array", 
          "paired-end mapping", 
          "copy number variations", 
          "structural variations", 
          "Sanger sequencing data", 
          "genome hybridization", 
          "sequencing technologies", 
          "sequencing data", 
          "short reads", 
          "polymorphism array", 
          "sequencing", 
          "genome", 
          "computational methods", 
          "number of studies", 
          "reads", 
          "hybridization", 
          "variation", 
          "large regions", 
          "region", 
          "mapping", 
          "high coverage", 
          "better resolution", 
          "generation", 
          "array", 
          "number", 
          "such methods", 
          "advent", 
          "latest techniques", 
          "study", 
          "future research directions", 
          "resolution", 
          "data", 
          "new generation", 
          "limitations", 
          "research directions", 
          "method", 
          "challenges", 
          "years", 
          "advantages", 
          "technology", 
          "coverage", 
          "survey", 
          "technique", 
          "direction", 
          "strength", 
          "accuracy"
        ], 
        "name": "Computational methods for discovering structural variation with next-generation sequencing", 
        "pagination": "s13-s20", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019637093"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth.1374"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19844226"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth.1374", 
          "https://app.dimensions.ai/details/publication/pub.1019637093"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmeth.1374"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1374'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      21 PREDICATES      113 URIs      76 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth.1374 schema:about N0768e4db65874d0aae21bd14d240228d
    2 N3dab8ff8902c44bd869cf8299157d2e1
    3 N65178c95fbc04e899e51d3953812e0e4
    4 N845a093a6f724357848f9c205d261f8f
    5 Nac3529eecdeb4547ae20353baccb6345
    6 Nd7a85dbacb0b4b4bb1ef727e2daaa985
    7 Nfc0cd8c2f6f34eb3b98584f42413e99b
    8 Nff9a08d928ff466c85be85a1343fc262
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author Nf8f4926e2d514870849eb68b4c6cc1a3
    12 schema:citation sg:pub.10.1007/978-3-642-02008-7_30
    13 sg:pub.10.1038/2524
    14 sg:pub.10.1038/nature04000
    15 sg:pub.10.1038/nature04226
    16 sg:pub.10.1038/nature05329
    17 sg:pub.10.1038/nature06862
    18 sg:pub.10.1038/nature07517
    19 sg:pub.10.1038/nbt0308-256b
    20 sg:pub.10.1038/nbt1486
    21 sg:pub.10.1038/ng.128
    22 sg:pub.10.1038/ng.236
    23 sg:pub.10.1038/ng.238
    24 sg:pub.10.1038/ng1416
    25 sg:pub.10.1038/ng1562
    26 sg:pub.10.1038/ng1695
    27 sg:pub.10.1038/ng1696
    28 sg:pub.10.1038/ng1697
    29 sg:pub.10.1038/ng2028
    30 sg:pub.10.1038/ng2054
    31 sg:pub.10.1038/ng2080
    32 sg:pub.10.1038/nmeth.1276
    33 sg:pub.10.1038/nmeth.1363
    34 sg:pub.10.1038/nmeth.f.256
    35 sg:pub.10.1038/nmeth1155
    36 sg:pub.10.1038/nrc1299
    37 sg:pub.10.1038/nrg1767
    38 sg:pub.10.1186/gb-2003-4-8-r50
    39 sg:pub.10.1186/gb-2009-10-2-r23
    40 sg:pub.10.1186/gb-2009-10-3-r32
    41 schema:datePublished 2009-10-15
    42 schema:datePublishedReg 2009-10-15
    43 schema:description In the last several years, a number of studies have described large-scale structural variation in several genomes. Traditionally, such methods have used whole-genome array comparative genome hybridization or single-nucleotide polymorphism arrays to detect large regions subject to copy-number variation. Later techniques have been based on paired-end mapping of Sanger sequencing data, providing better resolution and accuracy. With the advent of next-generation sequencing, a new generation of methods is being developed to tackle the challenges of short reads, while taking advantage of the high coverage the new sequencing technologies provide. In this survey, we describe these methods, including their strengths and their limitations, and future research directions.
    44 schema:genre article
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N75e85d2607db4bd696369ebc85247eb4
    47 Nebc488ec7b654ab29f84d9b50250ddaf
    48 sg:journal.1033763
    49 schema:keywords Sanger sequencing data
    50 accuracy
    51 advantages
    52 advent
    53 array
    54 array comparative genome hybridization
    55 better resolution
    56 challenges
    57 comparative genome hybridization
    58 computational methods
    59 copy number variations
    60 coverage
    61 data
    62 direction
    63 future research directions
    64 generation
    65 genome
    66 genome hybridization
    67 high coverage
    68 hybridization
    69 large regions
    70 large-scale structural variations
    71 latest techniques
    72 limitations
    73 mapping
    74 method
    75 new generation
    76 new sequencing technologies
    77 next-generation sequencing
    78 number
    79 number of studies
    80 paired-end mapping
    81 polymorphism array
    82 reads
    83 region
    84 research directions
    85 resolution
    86 sequencing
    87 sequencing data
    88 sequencing technologies
    89 short reads
    90 single nucleotide polymorphism array
    91 strength
    92 structural variations
    93 study
    94 such methods
    95 survey
    96 technique
    97 technology
    98 variation
    99 years
    100 schema:name Computational methods for discovering structural variation with next-generation sequencing
    101 schema:pagination s13-s20
    102 schema:productId N2d410aa17c99474e967a7dbfc93e5d24
    103 N4e7bf90cff2f4a70bdfba8ee16ceab6e
    104 N6fc6bf403fd14826ac79e452d4ea72fd
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019637093
    106 https://doi.org/10.1038/nmeth.1374
    107 schema:sdDatePublished 2022-09-02T15:54
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher Ncfc5cbbd51d34e6b902b56530ab7f1e0
    110 schema:url https://doi.org/10.1038/nmeth.1374
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N0768e4db65874d0aae21bd14d240228d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Genome
    116 rdf:type schema:DefinedTerm
    117 N2d410aa17c99474e967a7dbfc93e5d24 schema:name doi
    118 schema:value 10.1038/nmeth.1374
    119 rdf:type schema:PropertyValue
    120 N3dab8ff8902c44bd869cf8299157d2e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Computational Biology
    122 rdf:type schema:DefinedTerm
    123 N4e7bf90cff2f4a70bdfba8ee16ceab6e schema:name pubmed_id
    124 schema:value 19844226
    125 rdf:type schema:PropertyValue
    126 N65178c95fbc04e899e51d3953812e0e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Humans
    128 rdf:type schema:DefinedTerm
    129 N6fc6bf403fd14826ac79e452d4ea72fd schema:name dimensions_id
    130 schema:value pub.1019637093
    131 rdf:type schema:PropertyValue
    132 N75e85d2607db4bd696369ebc85247eb4 schema:issueNumber Suppl 11
    133 rdf:type schema:PublicationIssue
    134 N845a093a6f724357848f9c205d261f8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Sequence Analysis, DNA
    136 rdf:type schema:DefinedTerm
    137 Nac3529eecdeb4547ae20353baccb6345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Genomics
    139 rdf:type schema:DefinedTerm
    140 Nc128a9a9376b4ab197b8fc07d2e0ecad schema:affiliation grid-institutes:grid.17063.33
    141 schema:familyName Stanciu
    142 schema:givenName Monica
    143 rdf:type schema:Person
    144 Ncfc5cbbd51d34e6b902b56530ab7f1e0 schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 Ncfdd7e41c677498d9dfb329784c731af rdf:first sg:person.01253563237.25
    147 rdf:rest rdf:nil
    148 Nd7a85dbacb0b4b4bb1ef727e2daaa985 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Base Sequence
    150 rdf:type schema:DefinedTerm
    151 Nebc488ec7b654ab29f84d9b50250ddaf schema:volumeNumber 6
    152 rdf:type schema:PublicationVolume
    153 Nf8f4926e2d514870849eb68b4c6cc1a3 rdf:first sg:person.0722365100.46
    154 rdf:rest Nfdce6c456b984c51859a9484fcf914f2
    155 Nfc0cd8c2f6f34eb3b98584f42413e99b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Algorithms
    157 rdf:type schema:DefinedTerm
    158 Nfdce6c456b984c51859a9484fcf914f2 rdf:first Nc128a9a9376b4ab197b8fc07d2e0ecad
    159 rdf:rest Ncfdd7e41c677498d9dfb329784c731af
    160 Nff9a08d928ff466c85be85a1343fc262 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Genetic Variation
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Biological Sciences
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Genetics
    168 rdf:type schema:DefinedTerm
    169 sg:journal.1033763 schema:issn 1548-7091
    170 1548-7105
    171 schema:name Nature Methods
    172 schema:publisher Springer Nature
    173 rdf:type schema:Periodical
    174 sg:person.01253563237.25 schema:affiliation grid-institutes:grid.17063.33
    175 schema:familyName Brudno
    176 schema:givenName Michael
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25
    178 rdf:type schema:Person
    179 sg:person.0722365100.46 schema:affiliation grid-institutes:grid.17063.33
    180 schema:familyName Medvedev
    181 schema:givenName Paul
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722365100.46
    183 rdf:type schema:Person
    184 sg:pub.10.1007/978-3-642-02008-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006051485
    185 https://doi.org/10.1007/978-3-642-02008-7_30
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/2524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409761
    188 https://doi.org/10.1038/2524
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature04000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048617134
    191 https://doi.org/10.1038/nature04000
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature04226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017293702
    194 https://doi.org/10.1038/nature04226
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature05329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925490
    197 https://doi.org/10.1038/nature05329
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature06862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038272226
    200 https://doi.org/10.1038/nature06862
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
    203 https://doi.org/10.1038/nature07517
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nbt0308-256b schema:sameAs https://app.dimensions.ai/details/publication/pub.1045597694
    206 https://doi.org/10.1038/nbt0308-256b
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
    209 https://doi.org/10.1038/nbt1486
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/ng.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047246435
    212 https://doi.org/10.1038/ng.128
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ng.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001828025
    215 https://doi.org/10.1038/ng.236
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ng.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047420273
    218 https://doi.org/10.1038/ng.238
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/ng1416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002767840
    221 https://doi.org/10.1038/ng1416
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ng1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014017119
    224 https://doi.org/10.1038/ng1562
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ng1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032451322
    227 https://doi.org/10.1038/ng1695
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ng1696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002416433
    230 https://doi.org/10.1038/ng1696
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/ng1697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027902994
    233 https://doi.org/10.1038/ng1697
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/ng2028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000437341
    236 https://doi.org/10.1038/ng2028
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/ng2054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023824407
    239 https://doi.org/10.1038/ng2054
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/ng2080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025292804
    242 https://doi.org/10.1038/ng2080
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nmeth.1276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333243
    245 https://doi.org/10.1038/nmeth.1276
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nmeth.1363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020581697
    248 https://doi.org/10.1038/nmeth.1363
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nmeth.f.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001704732
    251 https://doi.org/10.1038/nmeth.f.256
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nmeth1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049152412
    254 https://doi.org/10.1038/nmeth1155
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nrc1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022731034
    257 https://doi.org/10.1038/nrc1299
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nrg1767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033454038
    260 https://doi.org/10.1038/nrg1767
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/gb-2003-4-8-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044869885
    263 https://doi.org/10.1186/gb-2003-4-8-r50
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/gb-2009-10-2-r23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048248560
    266 https://doi.org/10.1186/gb-2009-10-2-r23
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/gb-2009-10-3-r32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031680869
    269 https://doi.org/10.1186/gb-2009-10-3-r32
    270 rdf:type schema:CreativeWork
    271 grid-institutes:grid.17063.33 schema:alternateName Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
    272 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
    273 schema:name Banting and Best Department of Medical Research, and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
    274 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...