Ontology type: schema:ScholarlyArticle Open Access: True
2009-09
AUTHORSArthur Brady, Steven L Salzberg
ABSTRACTMetagenomics projects collect DNA from uncharacterized environments that may contain thousands of species per sample. One main challenge facing metagenomic analysis is phylogenetic classification of raw sequence reads into groups representing the same or similar taxa, a prerequisite for genome assembly and for analyzing the biological diversity of a sample. New sequencing technologies have made metagenomics easier, by making sequencing faster, and more difficult, by producing shorter reads than previous technologies. Classifying sequences from reads as short as 100 base pairs has until now been relatively inaccurate, requiring researchers to use older, long-read technologies. We present Phymm, a classifier for metagenomic data, that has been trained on 539 complete, curated genomes and can accurately classify reads as short as 100 base pairs, a substantial improvement over previous composition-based classification methods. We also describe how combining Phymm with sequence alignment algorithms improves accuracy. More... »
PAGES673-676
http://scigraph.springernature.com/pub.10.1038/nmeth.1358
DOIhttp://dx.doi.org/10.1038/nmeth.1358
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008886215
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/19648916
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Artificial Intelligence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bacteria",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Base Sequence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "DNA",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Genomics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Hydrogen-Ion Concentration",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Markov Chains",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mining",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Phylogeny",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Alignment",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Soil Microbiology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Maryland, College Park",
"id": "https://www.grid.ac/institutes/grid.164295.d",
"name": [
"Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA."
],
"type": "Organization"
},
"familyName": "Brady",
"givenName": "Arthur",
"id": "sg:person.01025032714.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025032714.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Maryland, College Park",
"id": "https://www.grid.ac/institutes/grid.164295.d",
"name": [
"Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA."
],
"type": "Organization"
},
"familyName": "Salzberg",
"givenName": "Steven L",
"id": "sg:person.01223441713.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223441713.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1128/mmbr.00009-08",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000663038"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1128/aem.66.6.2541-2547.2000",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004915970"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth976",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007149601",
"https://doi.org/10.1038/nmeth976"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth976",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007149601",
"https://doi.org/10.1038/nmeth976"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkl842",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008035809"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/27.23.4636",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012730605"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2148-5-63",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012923347",
"https://doi.org/10.1186/1471-2148-5-63"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/0471250953.bi1003s00",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018675436"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023089166",
"https://doi.org/10.1038/nature02340"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023089166",
"https://doi.org/10.1038/nature02340"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkn038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024849043"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0168-9525(00)89076-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024959286"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btm009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025913915"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0003703",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028583416"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkn496",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029662478"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1107851",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032827529"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1101/gr.5969107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034259503"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/26.2.544",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034760089"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btm632",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040151889"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth1043",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047202519",
"https://doi.org/10.1038/nmeth1043"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/25.17.3389",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047265454"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0001584",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050937455"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-387-30742-7_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052629990",
"https://doi.org/10.1007/0-387-30742-7_16"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-09",
"datePublishedReg": "2009-09-01",
"description": "Metagenomics projects collect DNA from uncharacterized environments that may contain thousands of species per sample. One main challenge facing metagenomic analysis is phylogenetic classification of raw sequence reads into groups representing the same or similar taxa, a prerequisite for genome assembly and for analyzing the biological diversity of a sample. New sequencing technologies have made metagenomics easier, by making sequencing faster, and more difficult, by producing shorter reads than previous technologies. Classifying sequences from reads as short as 100 base pairs has until now been relatively inaccurate, requiring researchers to use older, long-read technologies. We present Phymm, a classifier for metagenomic data, that has been trained on 539 complete, curated genomes and can accurately classify reads as short as 100 base pairs, a substantial improvement over previous composition-based classification methods. We also describe how combining Phymm with sequence alignment algorithms improves accuracy.",
"genre": "research_article",
"id": "sg:pub.10.1038/nmeth.1358",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2545461",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2519905",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2529352",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1033763",
"issn": [
"1548-7091",
"1548-7105"
],
"name": "Nature Methods",
"type": "Periodical"
},
{
"issueNumber": "9",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "6"
}
],
"name": "Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models",
"pagination": "673-676",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"2a56259865d74c483e3b0257771596a7cfe5245b5ef01fbe1ad0ff11ecb06a0a"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"19648916"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101215604"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/nmeth.1358"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008886215"
]
}
],
"sameAs": [
"https://doi.org/10.1038/nmeth.1358",
"https://app.dimensions.ai/details/publication/pub.1008886215"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64106_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://www.nature.com/articles/nmeth.1358"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1358'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1358'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1358'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1358'
This table displays all metadata directly associated to this object as RDF triples.
198 TRIPLES
21 PREDICATES
62 URIs
33 LITERALS
21 BLANK NODES