A large genome center's improvements to the Illumina sequencing system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-11-25

AUTHORS

Michael A Quail, Iwanka Kozarewa, Frances Smith, Aylwyn Scally, Philip J Stephens, Richard Durbin, Harold Swerdlow, Daniel J Turner

ABSTRACT

The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data. More... »

PAGES

1005-1010

References to SciGraph publications

Journal

TITLE

Nature Methods

ISSUE

12

VOLUME

5

Related Patents

  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Variants
  • Normalizing Chromosomes For The Determination And Verification Of Common And Rare Chromosomal Aneuploidies
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Method For Determining Copy Number Variations
  • Methods To Determine Tumor Gene Copy Number By Analysis Of Cell-Free Dna
  • Resolving Genome Fractions Using Polymorphism Counts
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Linked Paired Strand Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Variants
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Determining Fraction Of Fetal Nucleic Acids In Maternal Samples
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Detecting And Classifying Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • A Method To Calibrate Nucleic Acid Library Seeding Efficiency In Flowcells
  • Adapters, Methods, And Compositions For Duplex Sequencing
  • Method For Detecting Human Papilloma Virus Based On Solexa Sequencing Method
  • Linked Paired Strand Sequencing
  • Safe Sequencing System
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods And Systems For Detecting Genetic Variants
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Resolving Genome Fractions Using Polymorphism Counts
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Method For Detecting Human Papilloma Virus Based On Solexa Sequencing Method
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Assaying Ovarian Cyst Fluid
  • Method For Determining Copy Number Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Mutations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Estimating Cluster Numbers
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods And Systems For Detecting Genetic Variants
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Analyzing Copy Number Variation In The Detection Of Cancer
  • Methods And Systems For Detecting Genetic Variants
  • Analyzing Copy Number Variation In The Detection Of Cancer
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Safe Sequencing System
  • Methods And Systems For Detecting Genetic Variants
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Detecting And Classifying Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Molecular Subtyping, Prognosis And Treatment Of Prostate Cancer
  • Safe Sequencing System
  • Methods And Systems For Detecting Genetic Variants
  • Detecting And Classifying Copy Number Variation
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth.1270

    DOI

    http://dx.doi.org/10.1038/nmeth.1270

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021189255

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19034268


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Academies and Institutes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quail", 
            "givenName": "Michael A", 
            "id": "sg:person.01346001520.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346001520.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kozarewa", 
            "givenName": "Iwanka", 
            "id": "sg:person.0755560566.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755560566.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Frances", 
            "id": "sg:person.01115334331.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115334331.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scally", 
            "givenName": "Aylwyn", 
            "id": "sg:person.01040226603.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040226603.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stephens", 
            "givenName": "Philip J", 
            "id": "sg:person.013646440737.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646440737.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durbin", 
            "givenName": "Richard", 
            "id": "sg:person.012246531224.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246531224.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Swerdlow", 
            "givenName": "Harold", 
            "id": "sg:person.01353651207.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353651207.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turner", 
            "givenName": "Daniel J", 
            "id": "sg:person.01352235517.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352235517.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth1111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025042325", 
              "https://doi.org/10.1038/nmeth1111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56968-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039467066", 
              "https://doi.org/10.1007/978-3-642-56968-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2007.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012402265", 
              "https://doi.org/10.1038/ng.2007.42"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-11-25", 
        "datePublishedReg": "2008-11-25", 
        "description": "The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmeth.1270", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2751334", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "large genome centers", 
          "Wellcome Trust Sanger Institute", 
          "parallel sequencing technologies", 
          "Illumina sequencing system", 
          "sequence data", 
          "sequencing technologies", 
          "Sanger Institute", 
          "standard Illumina", 
          "library preparation", 
          "Analyzer platform", 
          "insert size distribution", 
          "Genome Center", 
          "sequencing system", 
          "high-throughput environment", 
          "gigabases", 
          "Illumina", 
          "sequencing", 
          "substantial amount", 
          "high yields", 
          "yield", 
          "environment", 
          "data", 
          "distribution", 
          "amount", 
          "production output", 
          "quantity", 
          "set", 
          "platform", 
          "system", 
          "preparation", 
          "technology", 
          "bias", 
          "size distribution", 
          "improvement", 
          "output", 
          "center", 
          "Institute", 
          "set of improvements"
        ], 
        "name": "A large genome center's improvements to the Illumina sequencing system", 
        "pagination": "1005-1010", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021189255"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth.1270"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19034268"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth.1270", 
          "https://app.dimensions.ai/details/publication/pub.1021189255"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_468.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmeth.1270"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      72 URIs      61 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth.1270 schema:about N4e25245f885a42f69fbe422ebe8e5c1a
    2 N73f55687a6594f2eb62dd55ff8d71761
    3 N8f055bb1157b4dd0902be2398703bf33
    4 N9c58d36d2b124160ba2ad1277359e67c
    5 Nb03dfe76508c47b0ac4e2a2e2f4a4c07
    6 Nbf1723afb02942faa71886835310f493
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 schema:author Nb2a8943ee76b436a80acc4c150d1fa03
    10 schema:citation sg:pub.10.1007/978-3-642-56968-5
    11 sg:pub.10.1038/ng.2007.42
    12 sg:pub.10.1038/nmeth1111
    13 schema:datePublished 2008-11-25
    14 schema:datePublishedReg 2008-11-25
    15 schema:description The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data.
    16 schema:genre article
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N53bb2e04acc54b4397236862af6fc99f
    19 N7749d8e58dff48d6a2cc9be2faae47c0
    20 sg:journal.1033763
    21 schema:keywords Analyzer platform
    22 Genome Center
    23 Illumina
    24 Illumina sequencing system
    25 Institute
    26 Sanger Institute
    27 Wellcome Trust Sanger Institute
    28 amount
    29 bias
    30 center
    31 data
    32 distribution
    33 environment
    34 gigabases
    35 high yields
    36 high-throughput environment
    37 improvement
    38 insert size distribution
    39 large genome centers
    40 library preparation
    41 output
    42 parallel sequencing technologies
    43 platform
    44 preparation
    45 production output
    46 quantity
    47 sequence data
    48 sequencing
    49 sequencing system
    50 sequencing technologies
    51 set
    52 set of improvements
    53 size distribution
    54 standard Illumina
    55 substantial amount
    56 system
    57 technology
    58 yield
    59 schema:name A large genome center's improvements to the Illumina sequencing system
    60 schema:pagination 1005-1010
    61 schema:productId N229e7ce3e5df43088d1076f2f135e553
    62 Nd27b33d933a54610a5499fd36fa36b67
    63 Ne5a1128a175445bab35f90bcccc1781d
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021189255
    65 https://doi.org/10.1038/nmeth.1270
    66 schema:sdDatePublished 2022-09-02T15:52
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N99566d46f660430dbdb90390b5e9911b
    69 schema:url https://doi.org/10.1038/nmeth.1270
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N05f58d28a829477f991a5148d973cf77 rdf:first sg:person.012246531224.10
    74 rdf:rest Na04e4cb67bc84fb3bf4ad2d9b819ce2e
    75 N21c81b962ad545ceab03919a978cea35 rdf:first sg:person.013646440737.20
    76 rdf:rest N05f58d28a829477f991a5148d973cf77
    77 N229e7ce3e5df43088d1076f2f135e553 schema:name doi
    78 schema:value 10.1038/nmeth.1270
    79 rdf:type schema:PropertyValue
    80 N4e25245f885a42f69fbe422ebe8e5c1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Sequence Analysis, DNA
    82 rdf:type schema:DefinedTerm
    83 N53bb2e04acc54b4397236862af6fc99f schema:issueNumber 12
    84 rdf:type schema:PublicationIssue
    85 N572c7126b8ef4d96b1c162222cd33fb2 rdf:first sg:person.01040226603.42
    86 rdf:rest N21c81b962ad545ceab03919a978cea35
    87 N73f55687a6594f2eb62dd55ff8d71761 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Equipment Design
    89 rdf:type schema:DefinedTerm
    90 N7749d8e58dff48d6a2cc9be2faae47c0 schema:volumeNumber 5
    91 rdf:type schema:PublicationVolume
    92 N8f055bb1157b4dd0902be2398703bf33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Genomics
    94 rdf:type schema:DefinedTerm
    95 N99566d46f660430dbdb90390b5e9911b schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 N9c58d36d2b124160ba2ad1277359e67c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Academies and Institutes
    99 rdf:type schema:DefinedTerm
    100 Na04e4cb67bc84fb3bf4ad2d9b819ce2e rdf:first sg:person.01353651207.83
    101 rdf:rest Ndf9abcdf03ec433b808c19ee34765997
    102 Nb03dfe76508c47b0ac4e2a2e2f4a4c07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Chromosome Mapping
    104 rdf:type schema:DefinedTerm
    105 Nb2a8943ee76b436a80acc4c150d1fa03 rdf:first sg:person.01346001520.94
    106 rdf:rest Nef1229992fc3498098a9a1dba643253a
    107 Nbf1723afb02942faa71886835310f493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Polymerase Chain Reaction
    109 rdf:type schema:DefinedTerm
    110 Nd27b33d933a54610a5499fd36fa36b67 schema:name pubmed_id
    111 schema:value 19034268
    112 rdf:type schema:PropertyValue
    113 Nda8e4c2d87dd4b15bbdd0601d391121b rdf:first sg:person.01115334331.01
    114 rdf:rest N572c7126b8ef4d96b1c162222cd33fb2
    115 Ndf9abcdf03ec433b808c19ee34765997 rdf:first sg:person.01352235517.68
    116 rdf:rest rdf:nil
    117 Ne5a1128a175445bab35f90bcccc1781d schema:name dimensions_id
    118 schema:value pub.1021189255
    119 rdf:type schema:PropertyValue
    120 Nef1229992fc3498098a9a1dba643253a rdf:first sg:person.0755560566.43
    121 rdf:rest Nda8e4c2d87dd4b15bbdd0601d391121b
    122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Biological Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Genetics
    127 rdf:type schema:DefinedTerm
    128 sg:grant.2751334 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1270
    129 rdf:type schema:MonetaryGrant
    130 sg:journal.1033763 schema:issn 1548-7091
    131 1548-7105
    132 schema:name Nature Methods
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.01040226603.42 schema:affiliation grid-institutes:grid.10306.34
    136 schema:familyName Scally
    137 schema:givenName Aylwyn
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040226603.42
    139 rdf:type schema:Person
    140 sg:person.01115334331.01 schema:affiliation grid-institutes:grid.10306.34
    141 schema:familyName Smith
    142 schema:givenName Frances
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115334331.01
    144 rdf:type schema:Person
    145 sg:person.012246531224.10 schema:affiliation grid-institutes:grid.10306.34
    146 schema:familyName Durbin
    147 schema:givenName Richard
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246531224.10
    149 rdf:type schema:Person
    150 sg:person.01346001520.94 schema:affiliation grid-institutes:grid.10306.34
    151 schema:familyName Quail
    152 schema:givenName Michael A
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346001520.94
    154 rdf:type schema:Person
    155 sg:person.01352235517.68 schema:affiliation grid-institutes:grid.10306.34
    156 schema:familyName Turner
    157 schema:givenName Daniel J
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352235517.68
    159 rdf:type schema:Person
    160 sg:person.01353651207.83 schema:affiliation grid-institutes:grid.10306.34
    161 schema:familyName Swerdlow
    162 schema:givenName Harold
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353651207.83
    164 rdf:type schema:Person
    165 sg:person.013646440737.20 schema:affiliation grid-institutes:grid.10306.34
    166 schema:familyName Stephens
    167 schema:givenName Philip J
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646440737.20
    169 rdf:type schema:Person
    170 sg:person.0755560566.43 schema:affiliation grid-institutes:grid.10306.34
    171 schema:familyName Kozarewa
    172 schema:givenName Iwanka
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755560566.43
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-3-642-56968-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039467066
    176 https://doi.org/10.1007/978-3-642-56968-5
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/ng.2007.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012402265
    179 https://doi.org/10.1038/ng.2007.42
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nmeth1111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042325
    182 https://doi.org/10.1038/nmeth1111
    183 rdf:type schema:CreativeWork
    184 grid-institutes:grid.10306.34 schema:alternateName Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK
    185 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...