A large genome center's improvements to the Illumina sequencing system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-11-25

AUTHORS

Michael A Quail, Iwanka Kozarewa, Frances Smith, Aylwyn Scally, Philip J Stephens, Richard Durbin, Harold Swerdlow, Daniel J Turner

ABSTRACT

The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data. More... »

PAGES

1005-1010

References to SciGraph publications

Journal

TITLE

Nature Methods

ISSUE

12

VOLUME

5

Related Patents

  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Variants
  • Normalizing Chromosomes For The Determination And Verification Of Common And Rare Chromosomal Aneuploidies
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Method For Determining Copy Number Variations
  • Methods To Determine Tumor Gene Copy Number By Analysis Of Cell-Free Dna
  • Resolving Genome Fractions Using Polymorphism Counts
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Linked Paired Strand Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Variants
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Determining Fraction Of Fetal Nucleic Acids In Maternal Samples
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Detecting And Classifying Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • A Method To Calibrate Nucleic Acid Library Seeding Efficiency In Flowcells
  • Adapters, Methods, And Compositions For Duplex Sequencing
  • Method For Detecting Human Papilloma Virus Based On Solexa Sequencing Method
  • Linked Paired Strand Sequencing
  • Safe Sequencing System
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods And Systems For Detecting Genetic Variants
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Method For Determining Copy Number Variations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Method For Detecting Human Papilloma Virus Based On Solexa Sequencing Method
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Resolving Genome Fractions Using Polymorphism Counts
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Mutations
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Assaying Ovarian Cyst Fluid
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Estimating Cluster Numbers
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods And Systems For Detecting Genetic Variants
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods And Systems For Detecting Genetic Variants
  • Safe Sequencing System
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Detecting And Classifying Copy Number Variation
  • Detecting And Classifying Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Safe Sequencing System
  • Methods And Systems For Detecting Genetic Variants
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Molecular Subtyping, Prognosis And Treatment Of Prostate Cancer
  • Methods Of Lowering The Error Rate Of Massively Parallel Dna Sequencing Using Duplex Consensus Sequencing
  • Analyzing Copy Number Variation In The Detection Of Cancer
  • Analyzing Copy Number Variation In The Detection Of Cancer
  • Methods And Systems For Detecting Genetic Variants
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth.1270

    DOI

    http://dx.doi.org/10.1038/nmeth.1270

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021189255

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/19034268


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Academies and Institutes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Equipment Design", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quail", 
            "givenName": "Michael A", 
            "id": "sg:person.01346001520.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346001520.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kozarewa", 
            "givenName": "Iwanka", 
            "id": "sg:person.0755560566.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755560566.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "Frances", 
            "id": "sg:person.01115334331.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115334331.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scally", 
            "givenName": "Aylwyn", 
            "id": "sg:person.01040226603.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040226603.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stephens", 
            "givenName": "Philip J", 
            "id": "sg:person.013646440737.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646440737.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Durbin", 
            "givenName": "Richard", 
            "id": "sg:person.012246531224.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246531224.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Swerdlow", 
            "givenName": "Harold", 
            "id": "sg:person.01353651207.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353651207.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK", 
              "id": "http://www.grid.ac/institutes/grid.10306.34", 
              "name": [
                "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Turner", 
            "givenName": "Daniel J", 
            "id": "sg:person.01352235517.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352235517.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth1111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025042325", 
              "https://doi.org/10.1038/nmeth1111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56968-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039467066", 
              "https://doi.org/10.1007/978-3-642-56968-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2007.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012402265", 
              "https://doi.org/10.1038/ng.2007.42"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-11-25", 
        "datePublishedReg": "2008-11-25", 
        "description": "The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmeth.1270", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2751334", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "large genome centers", 
          "Wellcome Trust Sanger Institute", 
          "parallel sequencing technologies", 
          "Illumina sequencing system", 
          "sequence data", 
          "sequencing technologies", 
          "Sanger Institute", 
          "standard Illumina", 
          "library preparation", 
          "Analyzer platform", 
          "insert size distribution", 
          "Genome Center", 
          "sequencing system", 
          "high-throughput environment", 
          "gigabases", 
          "Illumina", 
          "sequencing", 
          "substantial amount", 
          "high yields", 
          "yield", 
          "environment", 
          "data", 
          "distribution", 
          "amount", 
          "production output", 
          "quantity", 
          "set", 
          "platform", 
          "system", 
          "preparation", 
          "technology", 
          "bias", 
          "size distribution", 
          "improvement", 
          "output", 
          "center", 
          "Institute", 
          "set of improvements"
        ], 
        "name": "A large genome center's improvements to the Illumina sequencing system", 
        "pagination": "1005-1010", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021189255"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth.1270"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "19034268"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth.1270", 
          "https://app.dimensions.ai/details/publication/pub.1021189255"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_468.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmeth.1270"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1270'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      72 URIs      61 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth.1270 schema:about N52f715583a0145bcb02efbc6b0f9584f
    2 N78d0442ace2c46919a5778899d3063a7
    3 N98e4bae53f9a4013b4a725be72774d0c
    4 Na70baa19ce5b47c2b8f492205a46b346
    5 Na9bc3283356c40978bf98a963fd732fd
    6 Nfca77629d6b8494ea1901bcbd068a1e9
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 schema:author Ncaeca0cf6bcf4931ad6dc033204dc355
    10 schema:citation sg:pub.10.1007/978-3-642-56968-5
    11 sg:pub.10.1038/ng.2007.42
    12 sg:pub.10.1038/nmeth1111
    13 schema:datePublished 2008-11-25
    14 schema:datePublishedReg 2008-11-25
    15 schema:description The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data.
    16 schema:genre article
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N970430eb603f4ccda4dc7621f293e644
    19 Nb43416911bc24ea5828f32e589bf7802
    20 sg:journal.1033763
    21 schema:keywords Analyzer platform
    22 Genome Center
    23 Illumina
    24 Illumina sequencing system
    25 Institute
    26 Sanger Institute
    27 Wellcome Trust Sanger Institute
    28 amount
    29 bias
    30 center
    31 data
    32 distribution
    33 environment
    34 gigabases
    35 high yields
    36 high-throughput environment
    37 improvement
    38 insert size distribution
    39 large genome centers
    40 library preparation
    41 output
    42 parallel sequencing technologies
    43 platform
    44 preparation
    45 production output
    46 quantity
    47 sequence data
    48 sequencing
    49 sequencing system
    50 sequencing technologies
    51 set
    52 set of improvements
    53 size distribution
    54 standard Illumina
    55 substantial amount
    56 system
    57 technology
    58 yield
    59 schema:name A large genome center's improvements to the Illumina sequencing system
    60 schema:pagination 1005-1010
    61 schema:productId N0196cc7f724a4294940c6bcb9d5ddcfe
    62 N99541eb43f574bbf8adf4e79d39997e8
    63 Na63ded5444e04f42872ac7a2395e0ec0
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021189255
    65 https://doi.org/10.1038/nmeth.1270
    66 schema:sdDatePublished 2022-09-02T15:52
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher N64cbae53d9d740409d99a6b8e316074f
    69 schema:url https://doi.org/10.1038/nmeth.1270
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N0196cc7f724a4294940c6bcb9d5ddcfe schema:name dimensions_id
    74 schema:value pub.1021189255
    75 rdf:type schema:PropertyValue
    76 N4697b8c91fa247e0b7c66dba05979884 rdf:first sg:person.01352235517.68
    77 rdf:rest rdf:nil
    78 N52f715583a0145bcb02efbc6b0f9584f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Equipment Design
    80 rdf:type schema:DefinedTerm
    81 N5a07fcec09d14d7286647173b6f06caa rdf:first sg:person.01115334331.01
    82 rdf:rest Nc78b58c2bb2240c197833b5dda6b87e0
    83 N64cbae53d9d740409d99a6b8e316074f schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 N76bac775ceff4c1c90f18a172bc0c1b3 rdf:first sg:person.013646440737.20
    86 rdf:rest N9de383c65be34485aa349b0fdaa6c28e
    87 N78d0442ace2c46919a5778899d3063a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Chromosome Mapping
    89 rdf:type schema:DefinedTerm
    90 N8b90a8f83593444bb4d345529b94681e rdf:first sg:person.01353651207.83
    91 rdf:rest N4697b8c91fa247e0b7c66dba05979884
    92 N970430eb603f4ccda4dc7621f293e644 schema:issueNumber 12
    93 rdf:type schema:PublicationIssue
    94 N98e4bae53f9a4013b4a725be72774d0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Polymerase Chain Reaction
    96 rdf:type schema:DefinedTerm
    97 N99541eb43f574bbf8adf4e79d39997e8 schema:name doi
    98 schema:value 10.1038/nmeth.1270
    99 rdf:type schema:PropertyValue
    100 N9de383c65be34485aa349b0fdaa6c28e rdf:first sg:person.012246531224.10
    101 rdf:rest N8b90a8f83593444bb4d345529b94681e
    102 Na3ed4b64e4274cc180374798946d8461 rdf:first sg:person.0755560566.43
    103 rdf:rest N5a07fcec09d14d7286647173b6f06caa
    104 Na63ded5444e04f42872ac7a2395e0ec0 schema:name pubmed_id
    105 schema:value 19034268
    106 rdf:type schema:PropertyValue
    107 Na70baa19ce5b47c2b8f492205a46b346 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Academies and Institutes
    109 rdf:type schema:DefinedTerm
    110 Na9bc3283356c40978bf98a963fd732fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Sequence Analysis, DNA
    112 rdf:type schema:DefinedTerm
    113 Nb43416911bc24ea5828f32e589bf7802 schema:volumeNumber 5
    114 rdf:type schema:PublicationVolume
    115 Nc78b58c2bb2240c197833b5dda6b87e0 rdf:first sg:person.01040226603.42
    116 rdf:rest N76bac775ceff4c1c90f18a172bc0c1b3
    117 Ncaeca0cf6bcf4931ad6dc033204dc355 rdf:first sg:person.01346001520.94
    118 rdf:rest Na3ed4b64e4274cc180374798946d8461
    119 Nfca77629d6b8494ea1901bcbd068a1e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Genomics
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Biological Sciences
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Genetics
    127 rdf:type schema:DefinedTerm
    128 sg:grant.2751334 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1270
    129 rdf:type schema:MonetaryGrant
    130 sg:journal.1033763 schema:issn 1548-7091
    131 1548-7105
    132 schema:name Nature Methods
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.01040226603.42 schema:affiliation grid-institutes:grid.10306.34
    136 schema:familyName Scally
    137 schema:givenName Aylwyn
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040226603.42
    139 rdf:type schema:Person
    140 sg:person.01115334331.01 schema:affiliation grid-institutes:grid.10306.34
    141 schema:familyName Smith
    142 schema:givenName Frances
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115334331.01
    144 rdf:type schema:Person
    145 sg:person.012246531224.10 schema:affiliation grid-institutes:grid.10306.34
    146 schema:familyName Durbin
    147 schema:givenName Richard
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246531224.10
    149 rdf:type schema:Person
    150 sg:person.01346001520.94 schema:affiliation grid-institutes:grid.10306.34
    151 schema:familyName Quail
    152 schema:givenName Michael A
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346001520.94
    154 rdf:type schema:Person
    155 sg:person.01352235517.68 schema:affiliation grid-institutes:grid.10306.34
    156 schema:familyName Turner
    157 schema:givenName Daniel J
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352235517.68
    159 rdf:type schema:Person
    160 sg:person.01353651207.83 schema:affiliation grid-institutes:grid.10306.34
    161 schema:familyName Swerdlow
    162 schema:givenName Harold
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353651207.83
    164 rdf:type schema:Person
    165 sg:person.013646440737.20 schema:affiliation grid-institutes:grid.10306.34
    166 schema:familyName Stephens
    167 schema:givenName Philip J
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013646440737.20
    169 rdf:type schema:Person
    170 sg:person.0755560566.43 schema:affiliation grid-institutes:grid.10306.34
    171 schema:familyName Kozarewa
    172 schema:givenName Iwanka
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755560566.43
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-3-642-56968-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039467066
    176 https://doi.org/10.1007/978-3-642-56968-5
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/ng.2007.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012402265
    179 https://doi.org/10.1038/ng.2007.42
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nmeth1111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042325
    182 https://doi.org/10.1038/nmeth1111
    183 rdf:type schema:CreativeWork
    184 grid-institutes:grid.10306.34 schema:alternateName Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK
    185 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, Cambridgeshire, UK
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...