Mapping and quantifying mammalian transcriptomes by RNA-Seq View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07

AUTHORS

Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, Barbara Wold

ABSTRACT

We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3' untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 x 10(5) distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. More... »

PAGES

621-628

Journal

TITLE

Nature Methods

ISSUE

7

VOLUME

5

Related Patents

  • Extracellular Aldonolactonase
  • Regulation Of Toxin And Antitoxin Genes For Biological Containment
  • Deducing Exon Connectivity By Rna-Templated Dna Ligation/Sequencing
  • Brassica Plants With Modified Seed Oil Composition
  • Nucleic Acid Copy Number Determination Based On Fragment Estimates
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods And Systems For Digitally Counting Features On Arrays
  • Regulatory Elements From Labyrinthulomycetes Microorganisms
  • Polycomb-Associated Non-Coding Rnas
  • Massively Parallel Continguity Mapping
  • New Molecules For Isolation Of Polyribosomes, Ribosomes, Uses And Kits Thereof
  • Polycomb-Associated Non-Coding Rnas
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Risk Prognosis Method For Chronic Lymphocytic Leukemia
  • Polycomb-Associated Non-Coding Rnas
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Nannochloropsis Kozak Consensus Sequence
  • Breast Cancer Biomarker Signatures For Invasiveness And Prognosis
  • Methods For Diagnosing And Treating Refractory Celiac Disease Type 2
  • Materials And Methods For The Treatment Of Vascular Disease
  • Methods For Measuring Biomarkers In Gastrointestinal Cancer
  • Spatially Addressable Molecular Barcoding
  • Polycomb-Associated Non-Coding Rnas
  • Spatially Addressable Molecular Barcoding
  • Nucleic Acid Copy Number Determination Based On Fragment Estimates
  • Sample Preparation On A Solid Support
  • Individualized Vaccines For Cancer
  • Methods For Detecting Modification Resistant Nucleic Acids
  • Polycomb-Associated Non-Coding Rnas
  • Alternatively Spliced Mrna Isoforms As Prognostic Indicators For Metastatic Cancer
  • Rna Analytics Method
  • Extracellular Aldonolactonase
  • Risk Prognosis Method For Chronic Lymphocytic Leukemia
  • Systems And Methods For Single-Molecule Detection Using Nanotubes
  • Polycomb-Associated Non-Coding Rnas
  • Stable Genes In Comparative Transcriptomics
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Sample Preparation On A Solid Support
  • Alternatively Spliced Mrna Isoforms As Prognostic Indicators For Metastatic Cancer
  • Massively Parallel Single Cell Analysis
  • Methods For Detecting Modification Resistant Nucleic Acids
  • Regulatory Sequence Of Cupin Family Gene
  • Individualized Vaccines For Cancer
  • Tetraselmis Promoters And Terminators For Use In Eukaryotic Cells
  • Colorectal Cancer Markers
  • Methods For Detecting Modification Resistant Nucleic Acids
  • Molecular Subtyping, Prognosis And Treatment Of Prostate Cancer
  • Colorectal Cancer Markers
  • Massively Parallel Single Cell Analysis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmeth.1226

    DOI

    http://dx.doi.org/10.1038/nmeth.1226

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045381177

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18516045


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "3' Untranslated Regions", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alternative Splicing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice, Inbred C57BL", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Muscle, Skeletal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA Splicing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Messenger", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Division of Biology, MC 156-29, California Institute of Technology, Pasadena, California 91125, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mortazavi", 
            "givenName": "Ali", 
            "id": "sg:person.0673025131.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673025131.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Division of Biology, MC 156-29, California Institute of Technology, Pasadena, California 91125, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "Brian A", 
            "id": "sg:person.0741140331.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741140331.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Division of Biology, MC 156-29, California Institute of Technology, Pasadena, California 91125, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "McCue", 
            "givenName": "Kenneth", 
            "id": "sg:person.07460726307.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460726307.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Division of Biology, MC 156-29, California Institute of Technology, Pasadena, California 91125, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaeffer", 
            "givenName": "Lorian", 
            "id": "sg:person.01055366731.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055366731.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "California Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Division of Biology, MC 156-29, California Institute of Technology, Pasadena, California 91125, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wold", 
            "givenName": "Barbara", 
            "id": "sg:person.01026162263.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026162263.73"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.97.7.3491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001248097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1138341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002326113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006027429", 
              "https://doi.org/10.1038/nmeth768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006027429", 
              "https://doi.org/10.1038/nmeth768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006027429", 
              "https://doi.org/10.1038/nmeth768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1090100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009574243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013618994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-9861(77)90147-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019217065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.14.3.1647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019996752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2008.03.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020929996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025632491", 
              "https://doi.org/10.1038/nrg2083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028559169", 
              "https://doi.org/10.1038/76469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/76469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028559169", 
              "https://doi.org/10.1038/76469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031404240", 
              "https://doi.org/10.1186/1471-2105-7-276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2005.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035056054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2005.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035056054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0906-1071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037582905", 
              "https://doi.org/10.1038/nbt0906-1071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0906-1071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037582905", 
              "https://doi.org/10.1038/nbt0906-1071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2007-8-5-r82", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041442033", 
              "https://doi.org/10.1186/gb-2007-8-5-r82"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1103388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042123507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-461", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044855683", 
              "https://doi.org/10.1186/1471-2105-8-461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2596504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044936424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-7-231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045727951", 
              "https://doi.org/10.1186/gb-2004-5-7-231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1108625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046921907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.270.5235.484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062551479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.8091218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062652223"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-07", 
        "datePublishedReg": "2008-07-01", 
        "description": "We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3' untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 x 10(5) distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmeth.1226", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2699343", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1033763", 
            "issn": [
              "1548-7091", 
              "1548-7105"
            ], 
            "name": "Nature Methods", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Mapping and quantifying mammalian transcriptomes by RNA-Seq", 
        "pagination": "621-628", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d82b7f306ad5bdd6c3079b1daa206e1f2a55cbc208a8013fd5bed1d8bd7408f3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18516045"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101215604"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmeth.1226"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045381177"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmeth.1226", 
          "https://app.dimensions.ai/details/publication/pub.1045381177"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmeth.1226"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1226'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1226'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1226'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmeth.1226'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      21 PREDICATES      72 URIs      42 LITERALS      30 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmeth.1226 schema:about N0812ccc3a3844c019d1edded30e818fb
    2 N09c7cc1f13404e4996106e433446d811
    3 N0bac582fba30421e8a5c039b0aa149a2
    4 N1425d38cc0ba4f6cbfb4467543eeb872
    5 N1af56a61dbbf45569ff0aa2e444332bb
    6 N1d0e6426d1f245289a8d02599cb5639c
    7 N240607a942b8427faa5f6b90dce6a62f
    8 N34bd383dfbd140ccab3a0a629d208280
    9 N38690d876475476da65ea80ac74376b0
    10 N4a2ff6d58a8044f6b82cd9faad278ea1
    11 N4b31923147264188a2b562d411f4fdcf
    12 N627a4bb8ac9e44899af906901c645777
    13 N9b8442b42c944996b1c42f1a20958c53
    14 N9df6cca09c5b4bb6a608e4d7f4b8cf75
    15 Nabd87006914f4439a1dc5af15a9b5d2d
    16 Nbc5c5d9bd19846638d1345d1f34ef3b0
    17 Nc74350362fc2402dab4012c24013861b
    18 Ncf4082139dd248a2aa842846c79dd99b
    19 Nd9de076e138e4c7bb66643c46468389b
    20 Ndfe73ff1dd0649c083569b45ffd00ddd
    21 Nf1f4e2bf772a4ffdb6fef8925a1e2a45
    22 anzsrc-for:06
    23 anzsrc-for:0604
    24 schema:author N5b61ea73e4904683b2a0f0f24c9e9059
    25 schema:citation sg:pub.10.1038/76469
    26 sg:pub.10.1038/nbt0906-1071
    27 sg:pub.10.1038/nmeth768
    28 sg:pub.10.1038/nrg2083
    29 sg:pub.10.1186/1471-2105-7-276
    30 sg:pub.10.1186/1471-2105-8-461
    31 sg:pub.10.1186/gb-2004-5-7-231
    32 sg:pub.10.1186/gb-2007-8-5-r82
    33 https://doi.org/10.1016/0003-9861(77)90147-3
    34 https://doi.org/10.1016/j.cell.2008.03.029
    35 https://doi.org/10.1016/j.tig.2005.06.007
    36 https://doi.org/10.1016/s0022-2836(05)80360-2
    37 https://doi.org/10.1073/pnas.97.7.3491
    38 https://doi.org/10.1101/gr.2596504
    39 https://doi.org/10.1126/science.1090100
    40 https://doi.org/10.1126/science.1103388
    41 https://doi.org/10.1126/science.1108625
    42 https://doi.org/10.1126/science.1138341
    43 https://doi.org/10.1126/science.1158441
    44 https://doi.org/10.1126/science.270.5235.484
    45 https://doi.org/10.1126/science.8091218
    46 https://doi.org/10.1128/mcb.14.3.1647
    47 schema:datePublished 2008-07
    48 schema:datePublishedReg 2008-07-01
    49 schema:description We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3' untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 x 10(5) distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree false
    53 schema:isPartOf N9c556d8400ef45ad8de0726dd934cc23
    54 Nc6928b2716254b158cf90bc32099d097
    55 sg:journal.1033763
    56 schema:name Mapping and quantifying mammalian transcriptomes by RNA-Seq
    57 schema:pagination 621-628
    58 schema:productId N21da88e9e1374b0391a235162547431a
    59 N4b291663e95245b0b5d7146963a22a03
    60 N68b4a2dd1f14432daa7c485963208230
    61 N924b7e5eceec4f5a846429533c062fac
    62 Nf0b27c6afc6a4a679687babb6c2a1eb3
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
    64 https://doi.org/10.1038/nmeth.1226
    65 schema:sdDatePublished 2019-04-11T01:47
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher Ndb68fa314a864a28b10c271747572293
    68 schema:url http://www.nature.com/articles/nmeth.1226
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N0812ccc3a3844c019d1edded30e818fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Chromosome Mapping
    74 rdf:type schema:DefinedTerm
    75 N09c7cc1f13404e4996106e433446d811 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Alternative Splicing
    77 rdf:type schema:DefinedTerm
    78 N0bac582fba30421e8a5c039b0aa149a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Muscle, Skeletal
    80 rdf:type schema:DefinedTerm
    81 N1425d38cc0ba4f6cbfb4467543eeb872 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Oligonucleotide Array Sequence Analysis
    83 rdf:type schema:DefinedTerm
    84 N1af56a61dbbf45569ff0aa2e444332bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Algorithms
    86 rdf:type schema:DefinedTerm
    87 N1d0e6426d1f245289a8d02599cb5639c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Sensitivity and Specificity
    89 rdf:type schema:DefinedTerm
    90 N21da88e9e1374b0391a235162547431a schema:name nlm_unique_id
    91 schema:value 101215604
    92 rdf:type schema:PropertyValue
    93 N240607a942b8427faa5f6b90dce6a62f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name RNA Splicing
    95 rdf:type schema:DefinedTerm
    96 N34bd383dfbd140ccab3a0a629d208280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Promoter Regions, Genetic
    98 rdf:type schema:DefinedTerm
    99 N38690d876475476da65ea80ac74376b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Mice
    101 rdf:type schema:DefinedTerm
    102 N4939aa5760164ab2a7a45d6e5ac71178 rdf:first sg:person.0741140331.06
    103 rdf:rest Nf5f47363a767469fa3c08c64b2348f3d
    104 N4a2ff6d58a8044f6b82cd9faad278ea1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Sequence Analysis, RNA
    106 rdf:type schema:DefinedTerm
    107 N4b291663e95245b0b5d7146963a22a03 schema:name pubmed_id
    108 schema:value 18516045
    109 rdf:type schema:PropertyValue
    110 N4b31923147264188a2b562d411f4fdcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Software
    112 rdf:type schema:DefinedTerm
    113 N5b61ea73e4904683b2a0f0f24c9e9059 rdf:first sg:person.0673025131.06
    114 rdf:rest N4939aa5760164ab2a7a45d6e5ac71178
    115 N627a4bb8ac9e44899af906901c645777 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Gene Expression Profiling
    117 rdf:type schema:DefinedTerm
    118 N68b4a2dd1f14432daa7c485963208230 schema:name doi
    119 schema:value 10.1038/nmeth.1226
    120 rdf:type schema:PropertyValue
    121 N73b4e1e877ee4f1fb266ea7536df158b rdf:first sg:person.01026162263.73
    122 rdf:rest rdf:nil
    123 N924b7e5eceec4f5a846429533c062fac schema:name readcube_id
    124 schema:value d82b7f306ad5bdd6c3079b1daa206e1f2a55cbc208a8013fd5bed1d8bd7408f3
    125 rdf:type schema:PropertyValue
    126 N9b8442b42c944996b1c42f1a20958c53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Liver
    128 rdf:type schema:DefinedTerm
    129 N9c556d8400ef45ad8de0726dd934cc23 schema:issueNumber 7
    130 rdf:type schema:PublicationIssue
    131 N9df6cca09c5b4bb6a608e4d7f4b8cf75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name 3' Untranslated Regions
    133 rdf:type schema:DefinedTerm
    134 Nabd87006914f4439a1dc5af15a9b5d2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Brain
    136 rdf:type schema:DefinedTerm
    137 Nb8b54ac577104446b7460b0b73121fa4 rdf:first sg:person.01055366731.33
    138 rdf:rest N73b4e1e877ee4f1fb266ea7536df158b
    139 Nbc5c5d9bd19846638d1345d1f34ef3b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Databases, Nucleic Acid
    141 rdf:type schema:DefinedTerm
    142 Nc6928b2716254b158cf90bc32099d097 schema:volumeNumber 5
    143 rdf:type schema:PublicationVolume
    144 Nc74350362fc2402dab4012c24013861b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name RNA, Messenger
    146 rdf:type schema:DefinedTerm
    147 Ncf4082139dd248a2aa842846c79dd99b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Exons
    149 rdf:type schema:DefinedTerm
    150 Nd9de076e138e4c7bb66643c46468389b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Animals
    152 rdf:type schema:DefinedTerm
    153 Ndb68fa314a864a28b10c271747572293 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 Ndfe73ff1dd0649c083569b45ffd00ddd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Mice, Inbred C57BL
    157 rdf:type schema:DefinedTerm
    158 Nf0b27c6afc6a4a679687babb6c2a1eb3 schema:name dimensions_id
    159 schema:value pub.1045381177
    160 rdf:type schema:PropertyValue
    161 Nf1f4e2bf772a4ffdb6fef8925a1e2a45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name RNA
    163 rdf:type schema:DefinedTerm
    164 Nf5f47363a767469fa3c08c64b2348f3d rdf:first sg:person.07460726307.17
    165 rdf:rest Nb8b54ac577104446b7460b0b73121fa4
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Genetics
    171 rdf:type schema:DefinedTerm
    172 sg:grant.2699343 http://pending.schema.org/fundedItem sg:pub.10.1038/nmeth.1226
    173 rdf:type schema:MonetaryGrant
    174 sg:journal.1033763 schema:issn 1548-7091
    175 1548-7105
    176 schema:name Nature Methods
    177 rdf:type schema:Periodical
    178 sg:person.01026162263.73 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    179 schema:familyName Wold
    180 schema:givenName Barbara
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026162263.73
    182 rdf:type schema:Person
    183 sg:person.01055366731.33 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    184 schema:familyName Schaeffer
    185 schema:givenName Lorian
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055366731.33
    187 rdf:type schema:Person
    188 sg:person.0673025131.06 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    189 schema:familyName Mortazavi
    190 schema:givenName Ali
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673025131.06
    192 rdf:type schema:Person
    193 sg:person.0741140331.06 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    194 schema:familyName Williams
    195 schema:givenName Brian A
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741140331.06
    197 rdf:type schema:Person
    198 sg:person.07460726307.17 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
    199 schema:familyName McCue
    200 schema:givenName Kenneth
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460726307.17
    202 rdf:type schema:Person
    203 sg:pub.10.1038/76469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028559169
    204 https://doi.org/10.1038/76469
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nbt0906-1071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037582905
    207 https://doi.org/10.1038/nbt0906-1071
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nmeth768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006027429
    210 https://doi.org/10.1038/nmeth768
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nrg2083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025632491
    213 https://doi.org/10.1038/nrg2083
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/1471-2105-7-276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031404240
    216 https://doi.org/10.1186/1471-2105-7-276
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1471-2105-8-461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044855683
    219 https://doi.org/10.1186/1471-2105-8-461
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/gb-2004-5-7-231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045727951
    222 https://doi.org/10.1186/gb-2004-5-7-231
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1186/gb-2007-8-5-r82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041442033
    225 https://doi.org/10.1186/gb-2007-8-5-r82
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/0003-9861(77)90147-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019217065
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.cell.2008.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020929996
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.tig.2005.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035056054
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1073/pnas.97.7.3491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248097
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1101/gr.2596504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044936424
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1126/science.1090100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009574243
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1126/science.1103388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123507
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/science.1108625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046921907
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1126/science.1138341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002326113
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1126/science.1158441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457766
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1126/science.270.5235.484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551479
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.8091218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652223
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1128/mcb.14.3.1647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019996752
    254 rdf:type schema:CreativeWork
    255 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
    256 schema:name Division of Biology, MC 156-29, California Institute of Technology, Pasadena, California 91125, USA.
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...