DNA-assisted dispersion and separation of carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-05

AUTHORS

Ming Zheng, Anand Jagota, Ellen D Semke, Bruce A Diner, Robert S McLean, Steve R Lustig, Raymond E Richardson, Nancy G Tassi

ABSTRACT

Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology. More... »

PAGES

338-342

Journal

TITLE

Nature Materials

ISSUE

5

VOLUME

2

Author Affiliations

Related Patents

  • Reversible Biogel For Manipulation And Separation Of Single-Walled Carbon Nanotubes
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Reversible Biogel For Manipulation And Separation Of Single-Walled Carbon Nanotubes
  • Fibers Comprised Of Epitaxially Grown Single-Wall Carbon Nanotubes, And A Method For Added Catalyst And Continuous Growth At The Tip
  • Removing Undesirable Nanotubes During Nanotube Device Fabrication
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Method Of Modifying Electrical Properties Of Carbon Nanotubes Using Nanoparticles
  • Concentric Gate Nanotube Transistor Devices
  • Spin-Coatable Liquid For Formation Of High Purity Nanotube Films
  • Quinone Radicals For Enriching Specific Species Of Carbon Nanotubes
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Nanotube Transistor Integrated Circuit Layout
  • Separation Of Nanostructures
  • Sensors Employing Single-Walled Carbon Nanotubes
  • Amplification Of Carbon Nanotubes Via Seeded-Growth Methods
  • Aqueous Carbon Nanotube Applicator Liquids And Methods For Producing Applicator Liquids Thereof
  • Single Walled Carbon Nanotubes With Functionally Adsorbed Biopolymers For Use As Chemical Sensors
  • Process For Separating Metallic From Semiconducting Single-Walled Carbon Nanotubes
  • Nanocomposite Structures And Related Methods And Systems
  • Carbon Nanotube High Frequency Transistor Technology
  • Heterostructure Nanotube Devices
  • Diameter-Selective Reversible Closable Peptides
  • Separation Of Carbon Nanotubes In Density Gradients
  • Method For Destruction Of Metallic Carbon Nanotubes, Method For Production Of Aggregate Of Semiconducting Carbon Nanotubes, Method For Production Of Thin Film Of Semiconducting Carbon Nanotubes, Method For Destruction Of Semiconducting Carbon Nanotubes, Method For Production Of Aggregate Of Metallic Carbon Nanotubes, Method For Production Of Thin Film Of Metallic Carbon Nanotubes, Method For Production Of Electronic Device, Method For Production Of Aggregate Of Carbon Nanotubes, Method For Selective Reaction Of Semiconducting Carbon Nanotubes
  • High Purity Nanotube Fabrics And Films
  • Carbon Nanotube Transistor Fabrication
  • Nanotube Transistor And Rectifying Devices
  • Spin-Coatable Liquid For Formation Of High Purity Nanotube Films
  • Molecular Characterization With Carbon Nanotube Control
  • Separation Of Carbon Nanotubes Into Chirally Enriched Fractions
  • Surface-Modified Single-Walled Carbon Nanotubes And Methods Of Detecting A Chemical Compound Using Same
  • Method For Modifying Electrical Properties Of Carbon Nanotubes
  • Fabricating Carbon Nanotube Transistor Devices
  • Separation Of Carbon Nanotubes In Density Gradients
  • Molecular Characterization With Carbon Nanotube Control
  • Directed Flow Method And System For Bulk Separation Of Single-Walled Tubular Fullerenes Based On Helicity
  • Polynucleotides And Related Nanoassemblies, Structures, Arrangements, Methods And Systems
  • Monodisperse Single-Walled Carbon Nanotube Populations And Related Methods For Providing Same
  • Molecular Characterization With Carbon Nanotube Control
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Single Walled Carbon Nanotubes Functionally Adsorbed To Biopolymers For Use As Chemical Sensors
  • Carbon Nanotube Transistor Process With Transferred Carbon Nanotubes
  • Molecular Characterization With Carbon Nanotube Control
  • Selective Functionalization Of Carbon Nanotubes
  • Method For Dispersing Carbon Nanotubes Using Chondroitin Sulfate Cation Salt
  • Hydrogen Passivation Induced Dispersion Of Carbon Nanotubes And Graphene
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat877

    DOI

    http://dx.doi.org/10.1038/nmat877

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046012987

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12692536


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Ion Exchange", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Single-Stranded", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Structure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solubility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sonication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermodynamics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "DuPont (United States)", 
              "id": "https://www.grid.ac/institutes/grid.416832.a", 
              "name": [
                "DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880, USA. Ming.Zheng@usa.dupont.com"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Ming", 
            "id": "sg:person.0617564542.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617564542.45"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Jagota", 
            "givenName": "Anand", 
            "id": "sg:person.0616413355.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616413355.14"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Semke", 
            "givenName": "Ellen D", 
            "id": "sg:person.01317240430.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317240430.21"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Diner", 
            "givenName": "Bruce A", 
            "id": "sg:person.01010573423.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010573423.43"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "McLean", 
            "givenName": "Robert S", 
            "id": "sg:person.0641747530.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641747530.36"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Lustig", 
            "givenName": "Steve R", 
            "id": "sg:person.0710062730.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710062730.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Richardson", 
            "givenName": "Raymond E", 
            "type": "Person"
          }, 
          {
            "familyName": "Tassi", 
            "givenName": "Nancy G", 
            "id": "sg:person.011173252343.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173252343.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35015043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863531", 
              "https://doi.org/10.1038/35015043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863531", 
              "https://doi.org/10.1038/35015043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007934548", 
              "https://doi.org/10.1007/978-1-4612-5190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007934548", 
              "https://doi.org/10.1007/978-1-4612-5190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007934548", 
              "https://doi.org/10.1007/978-1-4612-5190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1060928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013559716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382609a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013811778", 
              "https://doi.org/10.1038/382609a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biochem.68.1.611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013832797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-2614(01)00490-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020197717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-2614(01)01237-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022579220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7799(99)01360-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026476591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382607a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030717946", 
              "https://doi.org/10.1038/382607a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1072631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040977992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043592007", 
              "https://doi.org/10.1038/nmat833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043592007", 
              "https://doi.org/10.1038/nmat833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl010065f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl010065f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.13104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060596991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.13104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060596991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.155414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060599396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.155414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060599396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1380721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062166521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5274.475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5274.483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/p080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098867011"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-05", 
        "datePublishedReg": "2003-05-01", 
        "description": "Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat877", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "DNA-assisted dispersion and separation of carbon nanotubes", 
        "pagination": "338-342", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "db2dfc25a82342fba7f1daef1765a9f04190eb4c89b79a45e5bcd8c1bb5f446e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12692536"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat877"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046012987"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat877", 
          "https://app.dimensions.ai/details/publication/pub.1046012987"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29219_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nmat/journal/v2/n5/full/nmat877.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat877'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat877'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat877'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat877'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      61 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat877 schema:about N1b88915daa0848c18281228816d36a8d
    2 N1ce9141bfdb04ebe93ddf677461c24df
    3 N54d290b6c78b404f82a1ea9d2dedcc42
    4 N5fafa03098d54f78ba6626a47f552114
    5 N7ca8f12e248949ccb89d0c349e69ed19
    6 N84b58e561e49485193ea5b8f31b6317f
    7 N8b7d50f111ec4911b2416d61e80e3567
    8 N929409e1327e4b1cba48f97d2e310f82
    9 Nac2697b0f7a047ac9d25e34eb0b6461a
    10 Nc0fff9c772bf4073ae9bb0db47188e94
    11 Nc4d4a3f5807c4705a75db50d3465cc4c
    12 Ne8bc48c9aa8b445982b3e40d058de08c
    13 Nece3e57d469f45aebb30a7a70bd67860
    14 Nfc50b75adc1247e38745299894880281
    15 anzsrc-for:03
    16 anzsrc-for:0306
    17 schema:author Nbb1d2b926716465ba33280392e0348f3
    18 schema:citation sg:pub.10.1007/978-1-4612-5190-3
    19 sg:pub.10.1038/35015043
    20 sg:pub.10.1038/382607a0
    21 sg:pub.10.1038/382609a0
    22 sg:pub.10.1038/nmat833
    23 https://doi.org/10.1016/s0009-2614(01)00490-0
    24 https://doi.org/10.1016/s0009-2614(01)01237-4
    25 https://doi.org/10.1016/s0167-7799(99)01360-8
    26 https://doi.org/10.1021/nl010065f
    27 https://doi.org/10.1103/physrevb.62.13104
    28 https://doi.org/10.1103/physrevb.63.155414
    29 https://doi.org/10.1116/1.1380721
    30 https://doi.org/10.1126/science.1060928
    31 https://doi.org/10.1126/science.1072631
    32 https://doi.org/10.1126/science.273.5274.475
    33 https://doi.org/10.1126/science.273.5274.483
    34 https://doi.org/10.1142/p080
    35 https://doi.org/10.1146/annurev.biochem.68.1.611
    36 schema:datePublished 2003-05
    37 schema:datePublishedReg 2003-05-01
    38 schema:description Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N64954d2693414c1cb908bd10e4d17273
    43 N72570403f0f346d6be8dd62f70bd67b7
    44 sg:journal.1031408
    45 schema:name DNA-assisted dispersion and separation of carbon nanotubes
    46 schema:pagination 338-342
    47 schema:productId N15a2fc0620684706b4c7597abb0db73b
    48 N83fa4a2ef66d499db4e2d2f3ef6df1dc
    49 N8936f44d80c34b06b98f01c52d0b4fad
    50 N8fa533f211774d628dd62d06e3f22b6e
    51 Nb392e0c1b46948b3b6c0ed8ce0a65b7e
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046012987
    53 https://doi.org/10.1038/nmat877
    54 schema:sdDatePublished 2019-04-11T11:57
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N9189d715a9514065bd7a07731794e8d7
    57 schema:url http://www.nature.com/nmat/journal/v2/n5/full/nmat877.html
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N15a2fc0620684706b4c7597abb0db73b schema:name nlm_unique_id
    62 schema:value 101155473
    63 rdf:type schema:PropertyValue
    64 N1b88915daa0848c18281228816d36a8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Models, Molecular
    66 rdf:type schema:DefinedTerm
    67 N1bb62fc8c1f84088a944b26a85e782c8 rdf:first Nf06cb24cbd5b4c66a26b0747adddedfb
    68 rdf:rest N8ac3194d8f6a455eb3f8db5d554a352d
    69 N1ce9141bfdb04ebe93ddf677461c24df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name DNA, Single-Stranded
    71 rdf:type schema:DefinedTerm
    72 N54d290b6c78b404f82a1ea9d2dedcc42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Thermodynamics
    74 rdf:type schema:DefinedTerm
    75 N5fafa03098d54f78ba6626a47f552114 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Biotechnology
    77 rdf:type schema:DefinedTerm
    78 N64954d2693414c1cb908bd10e4d17273 schema:volumeNumber 2
    79 rdf:type schema:PublicationVolume
    80 N663c14202c2c4148820d62f31a5e88a9 rdf:first sg:person.0616413355.14
    81 rdf:rest N6ca683f234194b3f8457cb7e24da4a20
    82 N6ca683f234194b3f8457cb7e24da4a20 rdf:first sg:person.01317240430.21
    83 rdf:rest Nb0fe8848226444ee8ef827f816d6e980
    84 N71967206153640408de37b2b70f8a9bf rdf:first sg:person.0710062730.12
    85 rdf:rest N1bb62fc8c1f84088a944b26a85e782c8
    86 N72570403f0f346d6be8dd62f70bd67b7 schema:issueNumber 5
    87 rdf:type schema:PublicationIssue
    88 N7ca8f12e248949ccb89d0c349e69ed19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Nucleic Acid Conformation
    90 rdf:type schema:DefinedTerm
    91 N83fa4a2ef66d499db4e2d2f3ef6df1dc schema:name readcube_id
    92 schema:value db2dfc25a82342fba7f1daef1765a9f04190eb4c89b79a45e5bcd8c1bb5f446e
    93 rdf:type schema:PropertyValue
    94 N84b58e561e49485193ea5b8f31b6317f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Microscopy, Atomic Force
    96 rdf:type schema:DefinedTerm
    97 N8936f44d80c34b06b98f01c52d0b4fad schema:name dimensions_id
    98 schema:value pub.1046012987
    99 rdf:type schema:PropertyValue
    100 N8ac3194d8f6a455eb3f8db5d554a352d rdf:first sg:person.011173252343.53
    101 rdf:rest rdf:nil
    102 N8b7d50f111ec4911b2416d61e80e3567 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Molecular Structure
    104 rdf:type schema:DefinedTerm
    105 N8fa533f211774d628dd62d06e3f22b6e schema:name doi
    106 schema:value 10.1038/nmat877
    107 rdf:type schema:PropertyValue
    108 N9189d715a9514065bd7a07731794e8d7 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N929409e1327e4b1cba48f97d2e310f82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Solubility
    112 rdf:type schema:DefinedTerm
    113 Nac2697b0f7a047ac9d25e34eb0b6461a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Crystallization
    115 rdf:type schema:DefinedTerm
    116 Nb0fe8848226444ee8ef827f816d6e980 rdf:first sg:person.01010573423.43
    117 rdf:rest Nf7010f354b244451a9d69d567b50c6e4
    118 Nb392e0c1b46948b3b6c0ed8ce0a65b7e schema:name pubmed_id
    119 schema:value 12692536
    120 rdf:type schema:PropertyValue
    121 Nbb1d2b926716465ba33280392e0348f3 rdf:first sg:person.0617564542.45
    122 rdf:rest N663c14202c2c4148820d62f31a5e88a9
    123 Nc0fff9c772bf4073ae9bb0db47188e94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Spectrometry, Fluorescence
    125 rdf:type schema:DefinedTerm
    126 Nc4d4a3f5807c4705a75db50d3465cc4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Nanotechnology
    128 rdf:type schema:DefinedTerm
    129 Ne8bc48c9aa8b445982b3e40d058de08c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Chromatography, Ion Exchange
    131 rdf:type schema:DefinedTerm
    132 Nece3e57d469f45aebb30a7a70bd67860 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Carbon
    134 rdf:type schema:DefinedTerm
    135 Nf06cb24cbd5b4c66a26b0747adddedfb schema:familyName Richardson
    136 schema:givenName Raymond E
    137 rdf:type schema:Person
    138 Nf7010f354b244451a9d69d567b50c6e4 rdf:first sg:person.0641747530.36
    139 rdf:rest N71967206153640408de37b2b70f8a9bf
    140 Nfc50b75adc1247e38745299894880281 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Sonication
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Chemical Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Physical Chemistry (incl. Structural)
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1031408 schema:issn 1476-1122
    150 1476-4660
    151 schema:name Nature Materials
    152 rdf:type schema:Periodical
    153 sg:person.01010573423.43 schema:familyName Diner
    154 schema:givenName Bruce A
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010573423.43
    156 rdf:type schema:Person
    157 sg:person.011173252343.53 schema:familyName Tassi
    158 schema:givenName Nancy G
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173252343.53
    160 rdf:type schema:Person
    161 sg:person.01317240430.21 schema:familyName Semke
    162 schema:givenName Ellen D
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317240430.21
    164 rdf:type schema:Person
    165 sg:person.0616413355.14 schema:familyName Jagota
    166 schema:givenName Anand
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616413355.14
    168 rdf:type schema:Person
    169 sg:person.0617564542.45 schema:affiliation https://www.grid.ac/institutes/grid.416832.a
    170 schema:familyName Zheng
    171 schema:givenName Ming
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617564542.45
    173 rdf:type schema:Person
    174 sg:person.0641747530.36 schema:familyName McLean
    175 schema:givenName Robert S
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641747530.36
    177 rdf:type schema:Person
    178 sg:person.0710062730.12 schema:familyName Lustig
    179 schema:givenName Steve R
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710062730.12
    181 rdf:type schema:Person
    182 sg:pub.10.1007/978-1-4612-5190-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007934548
    183 https://doi.org/10.1007/978-1-4612-5190-3
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/35015043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006863531
    186 https://doi.org/10.1038/35015043
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
    189 https://doi.org/10.1038/382607a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
    192 https://doi.org/10.1038/382609a0
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmat833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043592007
    195 https://doi.org/10.1038/nmat833
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/s0009-2614(01)00490-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020197717
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/s0009-2614(01)01237-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022579220
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s0167-7799(99)01360-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026476591
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1021/nl010065f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215068
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrevb.62.13104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060596991
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/physrevb.63.155414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599396
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1116/1.1380721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062166521
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1126/science.1060928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013559716
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1126/science.1072631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040977992
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1126/science.273.5274.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553699
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1126/science.273.5274.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553701
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1142/p080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098867011
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1146/annurev.biochem.68.1.611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013832797
    222 rdf:type schema:CreativeWork
    223 https://www.grid.ac/institutes/grid.416832.a schema:alternateName DuPont (United States)
    224 schema:name DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880, USA. Ming.Zheng@usa.dupont.com
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...