DNA-assisted dispersion and separation of carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-05

AUTHORS

Ming Zheng, Anand Jagota, Ellen D Semke, Bruce A Diner, Robert S McLean, Steve R Lustig, Raymond E Richardson, Nancy G Tassi

ABSTRACT

Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology. More... »

PAGES

338-342

Journal

TITLE

Nature Materials

ISSUE

5

VOLUME

2

Author Affiliations

Related Patents

  • Reversible Biogel For Manipulation And Separation Of Single-Walled Carbon Nanotubes
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Reversible Biogel For Manipulation And Separation Of Single-Walled Carbon Nanotubes
  • Fibers Comprised Of Epitaxially Grown Single-Wall Carbon Nanotubes, And A Method For Added Catalyst And Continuous Growth At The Tip
  • Removing Undesirable Nanotubes During Nanotube Device Fabrication
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Method Of Modifying Electrical Properties Of Carbon Nanotubes Using Nanoparticles
  • Concentric Gate Nanotube Transistor Devices
  • Spin-Coatable Liquid For Formation Of High Purity Nanotube Films
  • Quinone Radicals For Enriching Specific Species Of Carbon Nanotubes
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Nanotube Transistor Integrated Circuit Layout
  • Separation Of Nanostructures
  • Aqueous Carbon Nanotube Applicator Liquids And Methods For Producing Applicator Liquids Thereof
  • Single Walled Carbon Nanotubes With Functionally Adsorbed Biopolymers For Use As Chemical Sensors
  • Sensors Employing Single-Walled Carbon Nanotubes
  • Amplification Of Carbon Nanotubes Via Seeded-Growth Methods
  • Nanocomposite Structures And Related Methods And Systems
  • Process For Separating Metallic From Semiconducting Single-Walled Carbon Nanotubes
  • Carbon Nanotube High Frequency Transistor Technology
  • High Purity Nanotube Fabrics And Films
  • Separation Of Carbon Nanotubes In Density Gradients
  • Method For Destruction Of Metallic Carbon Nanotubes, Method For Production Of Aggregate Of Semiconducting Carbon Nanotubes, Method For Production Of Thin Film Of Semiconducting Carbon Nanotubes, Method For Destruction Of Semiconducting Carbon Nanotubes, Method For Production Of Aggregate Of Metallic Carbon Nanotubes, Method For Production Of Thin Film Of Metallic Carbon Nanotubes, Method For Production Of Electronic Device, Method For Production Of Aggregate Of Carbon Nanotubes, Method For Selective Reaction Of Semiconducting Carbon Nanotubes
  • Carbon Nanotube Transistor Fabrication
  • Diameter-Selective Reversible Closable Peptides
  • Nanotube Transistor And Rectifying Devices
  • Heterostructure Nanotube Devices
  • Separation Of Carbon Nanotubes Into Chirally Enriched Fractions
  • Spin-Coatable Liquid For Formation Of High Purity Nanotube Films
  • Molecular Characterization With Carbon Nanotube Control
  • Method For Modifying Electrical Properties Of Carbon Nanotubes
  • Surface-Modified Single-Walled Carbon Nanotubes And Methods Of Detecting A Chemical Compound Using Same
  • Separation Of Carbon Nanotubes In Density Gradients
  • Molecular Characterization With Carbon Nanotube Control
  • Directed Flow Method And System For Bulk Separation Of Single-Walled Tubular Fullerenes Based On Helicity
  • Fabricating Carbon Nanotube Transistor Devices
  • Polynucleotides And Related Nanoassemblies, Structures, Arrangements, Methods And Systems
  • Monodisperse Single-Walled Carbon Nanotube Populations And Related Methods For Providing Same
  • Molecular Characterization With Carbon Nanotube Control
  • Optical Nanosensors Comprising Photoluminescent Nanostructures
  • Single Walled Carbon Nanotubes Functionally Adsorbed To Biopolymers For Use As Chemical Sensors
  • Carbon Nanotube Transistor Process With Transferred Carbon Nanotubes
  • Molecular Characterization With Carbon Nanotube Control
  • Selective Functionalization Of Carbon Nanotubes
  • Method For Dispersing Carbon Nanotubes Using Chondroitin Sulfate Cation Salt
  • Hydrogen Passivation Induced Dispersion Of Carbon Nanotubes And Graphene
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat877

    DOI

    http://dx.doi.org/10.1038/nmat877

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046012987

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12692536


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatography, Ion Exchange", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Single-Stranded", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Atomic Force", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Structure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solubility", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sonication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Spectrometry, Fluorescence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thermodynamics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "DuPont (United States)", 
              "id": "https://www.grid.ac/institutes/grid.416832.a", 
              "name": [
                "DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880, USA. Ming.Zheng@usa.dupont.com"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Ming", 
            "id": "sg:person.0617564542.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617564542.45"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Jagota", 
            "givenName": "Anand", 
            "id": "sg:person.0616413355.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616413355.14"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Semke", 
            "givenName": "Ellen D", 
            "id": "sg:person.01317240430.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317240430.21"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Diner", 
            "givenName": "Bruce A", 
            "id": "sg:person.01010573423.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010573423.43"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "McLean", 
            "givenName": "Robert S", 
            "id": "sg:person.0641747530.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641747530.36"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Lustig", 
            "givenName": "Steve R", 
            "id": "sg:person.0710062730.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710062730.12"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Richardson", 
            "givenName": "Raymond E", 
            "type": "Person"
          }, 
          {
            "familyName": "Tassi", 
            "givenName": "Nancy G", 
            "id": "sg:person.011173252343.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173252343.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35015043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863531", 
              "https://doi.org/10.1038/35015043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35015043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863531", 
              "https://doi.org/10.1038/35015043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007934548", 
              "https://doi.org/10.1007/978-1-4612-5190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007934548", 
              "https://doi.org/10.1007/978-1-4612-5190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007934548", 
              "https://doi.org/10.1007/978-1-4612-5190-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1060928", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013559716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382609a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013811778", 
              "https://doi.org/10.1038/382609a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biochem.68.1.611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013832797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-2614(01)00490-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020197717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0009-2614(01)01237-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022579220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-7799(99)01360-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026476591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382607a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030717946", 
              "https://doi.org/10.1038/382607a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1072631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040977992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043592007", 
              "https://doi.org/10.1038/nmat833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043592007", 
              "https://doi.org/10.1038/nmat833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl010065f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl010065f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.13104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060596991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.62.13104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060596991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.155414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060599396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.155414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060599396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1380721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062166521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5274.475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.273.5274.483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062553701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/p080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098867011"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-05", 
        "datePublishedReg": "2003-05-01", 
        "description": "Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat877", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "DNA-assisted dispersion and separation of carbon nanotubes", 
        "pagination": "338-342", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "db2dfc25a82342fba7f1daef1765a9f04190eb4c89b79a45e5bcd8c1bb5f446e"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12692536"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat877"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046012987"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat877", 
          "https://app.dimensions.ai/details/publication/pub.1046012987"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29219_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nmat/journal/v2/n5/full/nmat877.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat877'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat877'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat877'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat877'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      61 URIs      35 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat877 schema:about N16655d7083804d469cded544cdad3bf7
    2 N1be756675a5c4afcaab0048d13963ab4
    3 N376df02b98054c06b73ca06f7f537298
    4 N4468df1d96b24e958fec7ac29f8e7bbc
    5 N5d1d8ca0c48b4b9bae879b135d0760da
    6 N6e5b9713f7f347d58110a719c2738574
    7 N724d8f9e898f447eb330abf257d033f9
    8 N89a36ca4cf1a41a8b3b6e228405a3d1c
    9 N8f2a6a6f843b438a878827aad8bd9a75
    10 Nb0f889c503de493c8b1a3cb49fc45119
    11 Nc2d5bb74024947849fe0a7266a0e4c81
    12 Nd0c1ebe37b68414ebd0bce8106cfdf24
    13 Ndbbcb27054da43969c98a0d3d9da8367
    14 Nfc53896698654179a9151290f1a6869a
    15 anzsrc-for:03
    16 anzsrc-for:0306
    17 schema:author N2142f6ec12a5425f9661689bfbff3cf3
    18 schema:citation sg:pub.10.1007/978-1-4612-5190-3
    19 sg:pub.10.1038/35015043
    20 sg:pub.10.1038/382607a0
    21 sg:pub.10.1038/382609a0
    22 sg:pub.10.1038/nmat833
    23 https://doi.org/10.1016/s0009-2614(01)00490-0
    24 https://doi.org/10.1016/s0009-2614(01)01237-4
    25 https://doi.org/10.1016/s0167-7799(99)01360-8
    26 https://doi.org/10.1021/nl010065f
    27 https://doi.org/10.1103/physrevb.62.13104
    28 https://doi.org/10.1103/physrevb.63.155414
    29 https://doi.org/10.1116/1.1380721
    30 https://doi.org/10.1126/science.1060928
    31 https://doi.org/10.1126/science.1072631
    32 https://doi.org/10.1126/science.273.5274.475
    33 https://doi.org/10.1126/science.273.5274.483
    34 https://doi.org/10.1142/p080
    35 https://doi.org/10.1146/annurev.biochem.68.1.611
    36 schema:datePublished 2003-05
    37 schema:datePublishedReg 2003-05-01
    38 schema:description Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N18df643064ab463d93e78a9acc58857b
    43 N82271df324314da2b066aff64253027a
    44 sg:journal.1031408
    45 schema:name DNA-assisted dispersion and separation of carbon nanotubes
    46 schema:pagination 338-342
    47 schema:productId N2f3bea3bb5e34350a32dd88eb200c9af
    48 N5e598fb6f9c2465a9c2a72f74058343a
    49 N773022c0c1de472ba9e212c2d060b985
    50 N79d6b7e2cbc3490589e45177dd415e4a
    51 Ne85c10e751c24fda87b19f611838b3d2
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046012987
    53 https://doi.org/10.1038/nmat877
    54 schema:sdDatePublished 2019-04-11T11:57
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Ne0a69d9e173b42c290ec06f5605ab03d
    57 schema:url http://www.nature.com/nmat/journal/v2/n5/full/nmat877.html
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N16655d7083804d469cded544cdad3bf7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Biotechnology
    63 rdf:type schema:DefinedTerm
    64 N18df643064ab463d93e78a9acc58857b schema:issueNumber 5
    65 rdf:type schema:PublicationIssue
    66 N1be756675a5c4afcaab0048d13963ab4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Spectrometry, Fluorescence
    68 rdf:type schema:DefinedTerm
    69 N2142f6ec12a5425f9661689bfbff3cf3 rdf:first sg:person.0617564542.45
    70 rdf:rest N72229540054e4dc2bb7f54b3017eaab0
    71 N2f3bea3bb5e34350a32dd88eb200c9af schema:name doi
    72 schema:value 10.1038/nmat877
    73 rdf:type schema:PropertyValue
    74 N376df02b98054c06b73ca06f7f537298 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Nanotechnology
    76 rdf:type schema:DefinedTerm
    77 N4468df1d96b24e958fec7ac29f8e7bbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Microscopy, Atomic Force
    79 rdf:type schema:DefinedTerm
    80 N5d1d8ca0c48b4b9bae879b135d0760da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Molecular Structure
    82 rdf:type schema:DefinedTerm
    83 N5d5cf8628b8b484e94a5a1d147b1b892 rdf:first sg:person.01010573423.43
    84 rdf:rest Nc1c69e9c35cb42808002089ef0eaf626
    85 N5e598fb6f9c2465a9c2a72f74058343a schema:name readcube_id
    86 schema:value db2dfc25a82342fba7f1daef1765a9f04190eb4c89b79a45e5bcd8c1bb5f446e
    87 rdf:type schema:PropertyValue
    88 N6e5b9713f7f347d58110a719c2738574 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Nucleic Acid Conformation
    90 rdf:type schema:DefinedTerm
    91 N702f58b00ad74e9e89931d926de9db5b rdf:first Nbc95bf5a11e94fda919a54846ddd8b05
    92 rdf:rest N8dfea0a379ab445481cc7ae39bbe3d21
    93 N72229540054e4dc2bb7f54b3017eaab0 rdf:first sg:person.0616413355.14
    94 rdf:rest N85d3a7b18d5b4ef4a59a6e5672104da5
    95 N724d8f9e898f447eb330abf257d033f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Crystallization
    97 rdf:type schema:DefinedTerm
    98 N773022c0c1de472ba9e212c2d060b985 schema:name pubmed_id
    99 schema:value 12692536
    100 rdf:type schema:PropertyValue
    101 N79d6b7e2cbc3490589e45177dd415e4a schema:name dimensions_id
    102 schema:value pub.1046012987
    103 rdf:type schema:PropertyValue
    104 N7c65b99d35174fbda4eba91efb8fba4a rdf:first sg:person.0710062730.12
    105 rdf:rest N702f58b00ad74e9e89931d926de9db5b
    106 N82271df324314da2b066aff64253027a schema:volumeNumber 2
    107 rdf:type schema:PublicationVolume
    108 N85d3a7b18d5b4ef4a59a6e5672104da5 rdf:first sg:person.01317240430.21
    109 rdf:rest N5d5cf8628b8b484e94a5a1d147b1b892
    110 N89a36ca4cf1a41a8b3b6e228405a3d1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Sonication
    112 rdf:type schema:DefinedTerm
    113 N8dfea0a379ab445481cc7ae39bbe3d21 rdf:first sg:person.011173252343.53
    114 rdf:rest rdf:nil
    115 N8f2a6a6f843b438a878827aad8bd9a75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name DNA, Single-Stranded
    117 rdf:type schema:DefinedTerm
    118 Nb0f889c503de493c8b1a3cb49fc45119 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Carbon
    120 rdf:type schema:DefinedTerm
    121 Nbc95bf5a11e94fda919a54846ddd8b05 schema:familyName Richardson
    122 schema:givenName Raymond E
    123 rdf:type schema:Person
    124 Nc1c69e9c35cb42808002089ef0eaf626 rdf:first sg:person.0641747530.36
    125 rdf:rest N7c65b99d35174fbda4eba91efb8fba4a
    126 Nc2d5bb74024947849fe0a7266a0e4c81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Chromatography, Ion Exchange
    128 rdf:type schema:DefinedTerm
    129 Nd0c1ebe37b68414ebd0bce8106cfdf24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Solubility
    131 rdf:type schema:DefinedTerm
    132 Ndbbcb27054da43969c98a0d3d9da8367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Models, Molecular
    134 rdf:type schema:DefinedTerm
    135 Ne0a69d9e173b42c290ec06f5605ab03d schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 Ne85c10e751c24fda87b19f611838b3d2 schema:name nlm_unique_id
    138 schema:value 101155473
    139 rdf:type schema:PropertyValue
    140 Nfc53896698654179a9151290f1a6869a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Thermodynamics
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Chemical Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Physical Chemistry (incl. Structural)
    148 rdf:type schema:DefinedTerm
    149 sg:journal.1031408 schema:issn 1476-1122
    150 1476-4660
    151 schema:name Nature Materials
    152 rdf:type schema:Periodical
    153 sg:person.01010573423.43 schema:familyName Diner
    154 schema:givenName Bruce A
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010573423.43
    156 rdf:type schema:Person
    157 sg:person.011173252343.53 schema:familyName Tassi
    158 schema:givenName Nancy G
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173252343.53
    160 rdf:type schema:Person
    161 sg:person.01317240430.21 schema:familyName Semke
    162 schema:givenName Ellen D
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317240430.21
    164 rdf:type schema:Person
    165 sg:person.0616413355.14 schema:familyName Jagota
    166 schema:givenName Anand
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616413355.14
    168 rdf:type schema:Person
    169 sg:person.0617564542.45 schema:affiliation https://www.grid.ac/institutes/grid.416832.a
    170 schema:familyName Zheng
    171 schema:givenName Ming
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617564542.45
    173 rdf:type schema:Person
    174 sg:person.0641747530.36 schema:familyName McLean
    175 schema:givenName Robert S
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641747530.36
    177 rdf:type schema:Person
    178 sg:person.0710062730.12 schema:familyName Lustig
    179 schema:givenName Steve R
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710062730.12
    181 rdf:type schema:Person
    182 sg:pub.10.1007/978-1-4612-5190-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007934548
    183 https://doi.org/10.1007/978-1-4612-5190-3
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/35015043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006863531
    186 https://doi.org/10.1038/35015043
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
    189 https://doi.org/10.1038/382607a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
    192 https://doi.org/10.1038/382609a0
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmat833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043592007
    195 https://doi.org/10.1038/nmat833
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/s0009-2614(01)00490-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020197717
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/s0009-2614(01)01237-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022579220
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s0167-7799(99)01360-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026476591
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1021/nl010065f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215068
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrevb.62.13104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060596991
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/physrevb.63.155414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599396
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1116/1.1380721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062166521
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1126/science.1060928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013559716
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1126/science.1072631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040977992
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1126/science.273.5274.475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553699
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1126/science.273.5274.483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553701
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1142/p080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098867011
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1146/annurev.biochem.68.1.611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013832797
    222 rdf:type schema:CreativeWork
    223 https://www.grid.ac/institutes/grid.416832.a schema:alternateName DuPont (United States)
    224 schema:name DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880, USA. Ming.Zheng@usa.dupont.com
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...