Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-04

AUTHORS

Stefan A Maier, Pieter G Kik, Harry A Atwater, Sheffer Meltzer, Elad Harel, Bruce E Koel, Ari A G Requicha

ABSTRACT

Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic energy can be guided below the diffraction limit along chains of closely spaced metal nanoparticles that convert the optical mode into non-radiating surface plasmons. A variety of methods such as electron beam lithography and self-assembly have been used to construct metal nanoparticle plasmon waveguides. However, all investigations of the optical properties of these waveguides have so far been confined to collective excitations, and direct experimental evidence for energy transport along plasmon waveguides has proved elusive. Here we present observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 microm in plasmon waveguides consisting of closely spaced silver rods. The waveguides are excited by the tip of a near-field scanning optical microscope, and energy transport is probed by using fluorescent nanospheres. More... »

PAGES

229-232

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat852

DOI

http://dx.doi.org/10.1038/nmat852

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025322991

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12690394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electromagnetic Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Materials Testing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Scanning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Fluorescence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Silver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Plasmon Resonance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transducers", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Mail Stop 128-95, Pasadena, California 91125, USA. stmaier@caltech.edu"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maier", 
        "givenName": "Stefan A", 
        "id": "sg:person.0652737645.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652737645.65"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Kik", 
        "givenName": "Pieter G", 
        "id": "sg:person.0664645761.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664645761.55"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Atwater", 
        "givenName": "Harry A", 
        "id": "sg:person.01154006161.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154006161.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Meltzer", 
        "givenName": "Sheffer", 
        "id": "sg:person.01213667147.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213667147.63"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Harel", 
        "givenName": "Elad", 
        "id": "sg:person.0732725064.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732725064.73"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Koel", 
        "givenName": "Bruce E", 
        "id": "sg:person.01001040264.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001040264.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Requicha", 
        "givenName": "Ari A G", 
        "id": "sg:person.01246035104.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246035104.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0304-3991(95)00146-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006726686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014858584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024686743", 
          "https://doi.org/10.1038/nmat775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024686743", 
          "https://doi.org/10.1038/nmat775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027780347", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09109-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027780347", 
          "https://doi.org/10.1007/978-3-662-09109-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09109-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027780347", 
          "https://doi.org/10.1007/978-3-662-09109-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1147175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057675416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1337637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1404425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057703267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1503870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057713633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r16356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r16356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.165422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.165422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.193408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.193408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.32.006173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065108307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.23.001331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065218163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471213748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471213748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic energy can be guided below the diffraction limit along chains of closely spaced metal nanoparticles that convert the optical mode into non-radiating surface plasmons. A variety of methods such as electron beam lithography and self-assembly have been used to construct metal nanoparticle plasmon waveguides. However, all investigations of the optical properties of these waveguides have so far been confined to collective excitations, and direct experimental evidence for energy transport along plasmon waveguides has proved elusive. Here we present observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 microm in plasmon waveguides consisting of closely spaced silver rods. The waveguides are excited by the tip of a near-field scanning optical microscope, and energy transport is probed by using fluorescent nanospheres.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat852", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3027610", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3017373", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3468714", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides", 
    "pagination": "229-232", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "78a38cd3dd6351cff14e9af00226f0bea268eb322fca6b047fe3337aa6ad2511"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12690394"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat852"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025322991"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat852", 
      "https://app.dimensions.ai/details/publication/pub.1025322991"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29182_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmat/journal/v2/n4/full/nmat852.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat852'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat852'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat852'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat852'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      58 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat852 schema:about N2171e6ac1bd5439386f91b443214f78e
2 N59cd272ff6a445c6b4433f8e194f16c1
3 N62733c6f00174d439da76a842702201e
4 N839388cb35f34580a2a919bafb18037c
5 N8b75b7fb76da4b55b0967bad8cb3b1d0
6 N98386d374f364978be152b97f9d166e4
7 N9dfdd1cd09714eb9b051e0ba4c16ef4a
8 Na725d5c624d24cec83b55e2d2585bd06
9 Na736bf253f904576aa84c23bc3e63baf
10 Nb060db596b22448c8b3b9aa8818599b2
11 Nd20d76263cc148719c84ab02c2fa2db2
12 anzsrc-for:09
13 anzsrc-for:0912
14 schema:author N01c9e762c7d44b8f9a0d6e1df824551b
15 schema:citation sg:pub.10.1007/978-3-662-09109-8
16 sg:pub.10.1038/nmat775
17 https://app.dimensions.ai/details/publication/pub.1027780347
18 https://doi.org/10.1002/0471213748
19 https://doi.org/10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z
20 https://doi.org/10.1016/0304-3991(95)00146-8
21 https://doi.org/10.1063/1.1147175
22 https://doi.org/10.1063/1.1337637
23 https://doi.org/10.1063/1.1404425
24 https://doi.org/10.1063/1.1503870
25 https://doi.org/10.1103/physrevb.62.r16356
26 https://doi.org/10.1103/physrevb.63.165422
27 https://doi.org/10.1103/physrevb.65.193408
28 https://doi.org/10.1103/physrevlett.77.3787
29 https://doi.org/10.1103/physrevlett.82.2590
30 https://doi.org/10.1103/physrevlett.84.4721
31 https://doi.org/10.1364/ao.32.006173
32 https://doi.org/10.1364/ol.23.001331
33 schema:datePublished 2003-04
34 schema:datePublishedReg 2003-04-01
35 schema:description Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic energy can be guided below the diffraction limit along chains of closely spaced metal nanoparticles that convert the optical mode into non-radiating surface plasmons. A variety of methods such as electron beam lithography and self-assembly have been used to construct metal nanoparticle plasmon waveguides. However, all investigations of the optical properties of these waveguides have so far been confined to collective excitations, and direct experimental evidence for energy transport along plasmon waveguides has proved elusive. Here we present observations of electromagnetic energy transport from a localized subwavelength source to a localized detector over distances of about 0.5 microm in plasmon waveguides consisting of closely spaced silver rods. The waveguides are excited by the tip of a near-field scanning optical microscope, and energy transport is probed by using fluorescent nanospheres.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N3ef236d24492424082e31b495a4607a4
40 Nc565962296d24968a370247dd157fd54
41 sg:journal.1031408
42 schema:name Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides
43 schema:pagination 229-232
44 schema:productId N35f7a6d8452a4d4c9d31ca4a18347566
45 N774ea333f684489f8cc0d0ff9fc524fa
46 N788e788f3ca048f19b5338e23656791b
47 Nd2d316c584f540918df82c0e4fd83406
48 Nf97929664775429aaa075960f4e70691
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025322991
50 https://doi.org/10.1038/nmat852
51 schema:sdDatePublished 2019-04-11T11:50
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nf40bfd1c3c044c1aa3cdab58a22085e9
54 schema:url http://www.nature.com/nmat/journal/v2/n4/full/nmat852.html
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N01c9e762c7d44b8f9a0d6e1df824551b rdf:first sg:person.0652737645.65
59 rdf:rest N0373088546dc4d2e882b63fef5eac358
60 N0373088546dc4d2e882b63fef5eac358 rdf:first sg:person.0664645761.55
61 rdf:rest N4bb36feccd5649e987ff1eddc50e8d6c
62 N2100f2621e0c49a48592b12c7e0ba003 rdf:first sg:person.0732725064.73
63 rdf:rest N29351c0c239b44afb19374d67a196ac5
64 N2171e6ac1bd5439386f91b443214f78e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Equipment Design
66 rdf:type schema:DefinedTerm
67 N29351c0c239b44afb19374d67a196ac5 rdf:first sg:person.01001040264.31
68 rdf:rest Ne2fe38fb7a214f7bbac5f4b119360c30
69 N35f7a6d8452a4d4c9d31ca4a18347566 schema:name doi
70 schema:value 10.1038/nmat852
71 rdf:type schema:PropertyValue
72 N3ef236d24492424082e31b495a4607a4 schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 N4bb36feccd5649e987ff1eddc50e8d6c rdf:first sg:person.01154006161.21
75 rdf:rest Nd5b97c7cfe95478eb701d6a2d7cca50f
76 N59cd272ff6a445c6b4433f8e194f16c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Surface Plasmon Resonance
78 rdf:type schema:DefinedTerm
79 N62733c6f00174d439da76a842702201e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Nanotechnology
81 rdf:type schema:DefinedTerm
82 N774ea333f684489f8cc0d0ff9fc524fa schema:name dimensions_id
83 schema:value pub.1025322991
84 rdf:type schema:PropertyValue
85 N788e788f3ca048f19b5338e23656791b schema:name nlm_unique_id
86 schema:value 101155473
87 rdf:type schema:PropertyValue
88 N839388cb35f34580a2a919bafb18037c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Materials Testing
90 rdf:type schema:DefinedTerm
91 N8b75b7fb76da4b55b0967bad8cb3b1d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Energy Transfer
93 rdf:type schema:DefinedTerm
94 N98386d374f364978be152b97f9d166e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Silver
96 rdf:type schema:DefinedTerm
97 N9dfdd1cd09714eb9b051e0ba4c16ef4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Microscopy, Electron, Scanning
99 rdf:type schema:DefinedTerm
100 Na725d5c624d24cec83b55e2d2585bd06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Radiation
102 rdf:type schema:DefinedTerm
103 Na736bf253f904576aa84c23bc3e63baf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Electromagnetic Phenomena
105 rdf:type schema:DefinedTerm
106 Nb060db596b22448c8b3b9aa8818599b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Transducers
108 rdf:type schema:DefinedTerm
109 Nc565962296d24968a370247dd157fd54 schema:volumeNumber 2
110 rdf:type schema:PublicationVolume
111 Nd20d76263cc148719c84ab02c2fa2db2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Microscopy, Fluorescence
113 rdf:type schema:DefinedTerm
114 Nd2d316c584f540918df82c0e4fd83406 schema:name readcube_id
115 schema:value 78a38cd3dd6351cff14e9af00226f0bea268eb322fca6b047fe3337aa6ad2511
116 rdf:type schema:PropertyValue
117 Nd5b97c7cfe95478eb701d6a2d7cca50f rdf:first sg:person.01213667147.63
118 rdf:rest N2100f2621e0c49a48592b12c7e0ba003
119 Ne2fe38fb7a214f7bbac5f4b119360c30 rdf:first sg:person.01246035104.62
120 rdf:rest rdf:nil
121 Nf40bfd1c3c044c1aa3cdab58a22085e9 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nf97929664775429aaa075960f4e70691 schema:name pubmed_id
124 schema:value 12690394
125 rdf:type schema:PropertyValue
126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
127 schema:name Engineering
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
130 schema:name Materials Engineering
131 rdf:type schema:DefinedTerm
132 sg:grant.3017373 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat852
133 rdf:type schema:MonetaryGrant
134 sg:grant.3027610 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat852
135 rdf:type schema:MonetaryGrant
136 sg:grant.3468714 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat852
137 rdf:type schema:MonetaryGrant
138 sg:journal.1031408 schema:issn 1476-1122
139 1476-4660
140 schema:name Nature Materials
141 rdf:type schema:Periodical
142 sg:person.01001040264.31 schema:familyName Koel
143 schema:givenName Bruce E
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001040264.31
145 rdf:type schema:Person
146 sg:person.01154006161.21 schema:familyName Atwater
147 schema:givenName Harry A
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154006161.21
149 rdf:type schema:Person
150 sg:person.01213667147.63 schema:familyName Meltzer
151 schema:givenName Sheffer
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213667147.63
153 rdf:type schema:Person
154 sg:person.01246035104.62 schema:familyName Requicha
155 schema:givenName Ari A G
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246035104.62
157 rdf:type schema:Person
158 sg:person.0652737645.65 schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
159 schema:familyName Maier
160 schema:givenName Stefan A
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652737645.65
162 rdf:type schema:Person
163 sg:person.0664645761.55 schema:familyName Kik
164 schema:givenName Pieter G
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664645761.55
166 rdf:type schema:Person
167 sg:person.0732725064.73 schema:familyName Harel
168 schema:givenName Elad
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732725064.73
170 rdf:type schema:Person
171 sg:pub.10.1007/978-3-662-09109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780347
172 https://doi.org/10.1007/978-3-662-09109-8
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nmat775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024686743
175 https://doi.org/10.1038/nmat775
176 rdf:type schema:CreativeWork
177 https://app.dimensions.ai/details/publication/pub.1027780347 schema:CreativeWork
178 https://doi.org/10.1002/0471213748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661498
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014858584
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/0304-3991(95)00146-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006726686
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.1147175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057675416
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.1337637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696401
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.1404425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057703267
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.1503870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713633
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.62.r16356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598297
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.63.165422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599479
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.65.193408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603150
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.77.3787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814161
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.82.2590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819180
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.84.4721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821305
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1364/ao.32.006173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065108307
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1364/ol.23.001331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065218163
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
209 schema:name Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Mail Stop 128-95, Pasadena, California 91125, USA. stmaier@caltech.edu
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...