Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-02

AUTHORS

Del Atkinson, Dan A Allwood, Gang Xiong, Michael D Cooke, Colm C Faulkner, Russell P Cowburn

ABSTRACT

As fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices. Measurements on elongated magnetic nanostructures highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics. A previous study of a 500-nm-wide NiFe structure obtained very low domain-wall mobility in a three-layer device. Here we report room-temperature measurements of the propagation velocity of a domain wall in a single-layer planar Ni80Fe20 ferromagnetic nanowire 200 nm wide. The wall velocities are extremely high and, importantly, the intrinsic wall mobility is close to that in continuous films, indicating that lateral confinement does not significantly affect the gyromagnetic spin damping parameter to the extreme extent previously suggested. Consequently the prospects for high-speed domain-wall motion in future nanoscale spintronic devices are excellent. More... »

PAGES

85-87

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat803

DOI

http://dx.doi.org/10.1038/nmat803

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002630578

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12612690


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ferric Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atkinson", 
        "givenName": "Del", 
        "id": "sg:person.0616052156.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616052156.04"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Allwood", 
        "givenName": "Dan A", 
        "id": "sg:person.01051036767.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051036767.44"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Xiong", 
        "givenName": "Gang", 
        "id": "sg:person.01117152167.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117152167.51"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Cooke", 
        "givenName": "Michael D", 
        "id": "sg:person.016323611201.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323611201.78"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Faulkner", 
        "givenName": "Colm C", 
        "id": "sg:person.01233400567.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233400567.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Cowburn", 
        "givenName": "Russell P", 
        "id": "sg:person.01200566506.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200566506.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.72.772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007747393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007747393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016319659", 
          "https://doi.org/10.1038/nature00905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016319659", 
          "https://doi.org/10.1038/nature00905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-40907-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033236583", 
          "https://doi.org/10.1007/3-540-40907-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-40907-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033236583", 
          "https://doi.org/10.1007/3-540-40907-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/34/20/303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053023272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.122945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1355357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057698197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1419032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057704769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1421211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057704990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1447500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057707210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1456403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057708492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1462872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057709155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.11552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.11552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.1873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.4512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.4512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.1042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.951072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061120515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.1971.1067097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061666888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.284.5413.468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564939"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-02", 
    "datePublishedReg": "2003-02-01", 
    "description": "As fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices. Measurements on elongated magnetic nanostructures highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics. A previous study of a 500-nm-wide NiFe structure obtained very low domain-wall mobility in a three-layer device. Here we report room-temperature measurements of the propagation velocity of a domain wall in a single-layer planar Ni80Fe20 ferromagnetic nanowire 200 nm wide. The wall velocities are extremely high and, importantly, the intrinsic wall mobility is close to that in continuous films, indicating that lateral confinement does not significantly affect the gyromagnetic spin damping parameter to the extreme extent previously suggested. Consequently the prospects for high-speed domain-wall motion in future nanoscale spintronic devices are excellent.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat803", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure", 
    "pagination": "85-87", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0c86327a2ab22ee5b0544dfd95a8b9593df775ff6962f5e6f73c417816cfb088"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12612690"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat803"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002630578"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat803", 
      "https://app.dimensions.ai/details/publication/pub.1002630578"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmat/journal/v2/n2/full/nmat803.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat803'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      55 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat803 schema:about N41b0e84cf9bc4bdb80c1a1bee201479f
2 Ne8535134654547ada6c1aedcfef472f6
3 Nf5f8ad70182b4532aec1f9f8c0e809ca
4 Nf657b7de41c2446ba15cf69b90527e19
5 anzsrc-for:09
6 anzsrc-for:0912
7 schema:author N6c0acd39bce14437935b0eed67ad6a43
8 schema:citation sg:pub.10.1007/3-540-40907-6_5
9 sg:pub.10.1038/nature00905
10 https://doi.org/10.1063/1.122945
11 https://doi.org/10.1063/1.1355357
12 https://doi.org/10.1063/1.1419032
13 https://doi.org/10.1063/1.1421211
14 https://doi.org/10.1063/1.1447500
15 https://doi.org/10.1063/1.1456403
16 https://doi.org/10.1063/1.1462872
17 https://doi.org/10.1088/0022-3727/34/20/303
18 https://doi.org/10.1103/physrevb.55.11552
19 https://doi.org/10.1103/physrevlett.72.772
20 https://doi.org/10.1103/physrevlett.77.1873
21 https://doi.org/10.1103/physrevlett.81.4512
22 https://doi.org/10.1103/physrevlett.83.1042
23 https://doi.org/10.1103/physrevlett.84.983
24 https://doi.org/10.1103/physrevlett.86.728
25 https://doi.org/10.1109/20.951072
26 https://doi.org/10.1109/tmag.1971.1067097
27 https://doi.org/10.1126/science.1065389
28 https://doi.org/10.1126/science.1070595
29 https://doi.org/10.1126/science.284.5413.468
30 schema:datePublished 2003-02
31 schema:datePublishedReg 2003-02-01
32 schema:description As fabrication technology pushes the dimensions of ferromagnetic structures into the nanoscale, understanding the magnetization processes of these structures is of fundamental interest, and key to future applications in hard disk drives, magnetic random access memory and other 'spintronic' devices. Measurements on elongated magnetic nanostructures highlighted the importance of nucleation and propagation of a magnetic boundary, or domain wall, between opposing magnetic domains in the magnetization reversal process. Domain-wall propagation in confined structures is of basic interest and critical to the performance of a recently demonstrated magnetic logic scheme for spintronics. A previous study of a 500-nm-wide NiFe structure obtained very low domain-wall mobility in a three-layer device. Here we report room-temperature measurements of the propagation velocity of a domain wall in a single-layer planar Ni80Fe20 ferromagnetic nanowire 200 nm wide. The wall velocities are extremely high and, importantly, the intrinsic wall mobility is close to that in continuous films, indicating that lateral confinement does not significantly affect the gyromagnetic spin damping parameter to the extreme extent previously suggested. Consequently the prospects for high-speed domain-wall motion in future nanoscale spintronic devices are excellent.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Nc5980723a1564e20856160a5d631b12b
37 Ndb405e6296d44c6498fce591730d21de
38 sg:journal.1031408
39 schema:name Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure
40 schema:pagination 85-87
41 schema:productId N7d71b2a46bce4764b7a9bb971f403987
42 N8d840f68dc7b4e76a8bf797a759a8629
43 Na38a76c271614c559e5515a13ad742d2
44 Nd0ef7ae2984e43c387be0f8cf6e2475e
45 Nd8a843fe4e604065979583c2d1564672
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002630578
47 https://doi.org/10.1038/nmat803
48 schema:sdDatePublished 2019-04-11T11:53
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nfa693d9ab65b46a9bc4e3c8818cbcf55
51 schema:url http://www.nature.com/nmat/journal/v2/n2/full/nmat803.html
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1d9b12a4a77e4db4be66cac464385a05 rdf:first sg:person.01233400567.20
56 rdf:rest Ne76c390993b04b3da085bdd1981e897a
57 N41b0e84cf9bc4bdb80c1a1bee201479f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Magnetics
59 rdf:type schema:DefinedTerm
60 N6c0acd39bce14437935b0eed67ad6a43 rdf:first sg:person.0616052156.04
61 rdf:rest N891b184462b64db18fd37c4b14aebd55
62 N7d71b2a46bce4764b7a9bb971f403987 schema:name nlm_unique_id
63 schema:value 101155473
64 rdf:type schema:PropertyValue
65 N891b184462b64db18fd37c4b14aebd55 rdf:first sg:person.01051036767.44
66 rdf:rest Nb088296797ec433ab453ce1ba8adcdaa
67 N8d840f68dc7b4e76a8bf797a759a8629 schema:name readcube_id
68 schema:value 0c86327a2ab22ee5b0544dfd95a8b9593df775ff6962f5e6f73c417816cfb088
69 rdf:type schema:PropertyValue
70 Na38a76c271614c559e5515a13ad742d2 schema:name doi
71 schema:value 10.1038/nmat803
72 rdf:type schema:PropertyValue
73 Nb088296797ec433ab453ce1ba8adcdaa rdf:first sg:person.01117152167.51
74 rdf:rest Nfbf51a7bda874c5b98c084b0d8988b56
75 Nc5980723a1564e20856160a5d631b12b schema:issueNumber 2
76 rdf:type schema:PublicationIssue
77 Nd0ef7ae2984e43c387be0f8cf6e2475e schema:name dimensions_id
78 schema:value pub.1002630578
79 rdf:type schema:PropertyValue
80 Nd8a843fe4e604065979583c2d1564672 schema:name pubmed_id
81 schema:value 12612690
82 rdf:type schema:PropertyValue
83 Ndb405e6296d44c6498fce591730d21de schema:volumeNumber 2
84 rdf:type schema:PublicationVolume
85 Ne76c390993b04b3da085bdd1981e897a rdf:first sg:person.01200566506.16
86 rdf:rest rdf:nil
87 Ne8535134654547ada6c1aedcfef472f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Temperature
89 rdf:type schema:DefinedTerm
90 Nf5f8ad70182b4532aec1f9f8c0e809ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Nanotechnology
92 rdf:type schema:DefinedTerm
93 Nf657b7de41c2446ba15cf69b90527e19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Ferric Compounds
95 rdf:type schema:DefinedTerm
96 Nfa693d9ab65b46a9bc4e3c8818cbcf55 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nfbf51a7bda874c5b98c084b0d8988b56 rdf:first sg:person.016323611201.78
99 rdf:rest N1d9b12a4a77e4db4be66cac464385a05
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:journal.1031408 schema:issn 1476-1122
107 1476-4660
108 schema:name Nature Materials
109 rdf:type schema:Periodical
110 sg:person.01051036767.44 schema:familyName Allwood
111 schema:givenName Dan A
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051036767.44
113 rdf:type schema:Person
114 sg:person.01117152167.51 schema:familyName Xiong
115 schema:givenName Gang
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117152167.51
117 rdf:type schema:Person
118 sg:person.01200566506.16 schema:familyName Cowburn
119 schema:givenName Russell P
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200566506.16
121 rdf:type schema:Person
122 sg:person.01233400567.20 schema:familyName Faulkner
123 schema:givenName Colm C
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233400567.20
125 rdf:type schema:Person
126 sg:person.016323611201.78 schema:familyName Cooke
127 schema:givenName Michael D
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016323611201.78
129 rdf:type schema:Person
130 sg:person.0616052156.04 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
131 schema:familyName Atkinson
132 schema:givenName Del
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616052156.04
134 rdf:type schema:Person
135 sg:pub.10.1007/3-540-40907-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033236583
136 https://doi.org/10.1007/3-540-40907-6_5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature00905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016319659
139 https://doi.org/10.1038/nature00905
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.122945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687101
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.1355357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057698197
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.1419032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704769
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1421211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704990
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.1447500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057707210
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.1456403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057708492
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.1462872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057709155
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0022-3727/34/20/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053023272
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.55.11552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583454
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.72.772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007747393
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.77.1873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813743
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.81.4512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818490
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.83.1042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819798
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.84.983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821609
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.86.728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823309
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/20.951072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061120515
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tmag.1971.1067097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061666888
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1065389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794148
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1070595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446430
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.284.5413.468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564939
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
182 schema:name Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK.
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...