High-κ dielectrics for advanced carbon-nanotube transistors and logic gates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-12

AUTHORS

Ali Javey, Hyoungsub Kim, Markus Brink, Qian Wang, Ant Ural, Jing Guo, Paul McIntyre, Paul McEuen, Mark Lundstrom, Hongjie Dai

ABSTRACT

The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S approximately 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S x m(-1) (12 microS per tube) and 3,000 cm2 x V(-1) x s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S approximately 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics. More... »

PAGES

241-246

Journal

TITLE

Nature Materials

ISSUE

4

VOLUME

1

Related Patents

  • Gas-Phase Functionalization Of Surfaces Including Carbon-Based Surfaces
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Nanotube-Based Switching Elements And Logic Circuits
  • Methods Of Making Spatially Aligned Nanotubes And Nanotube Arrays
  • Dynamic Sense Current Supply Circuit And Associated Method For Reading And Characterizing A Resistive Memory Array
  • Local Bottom Gates For Graphene And Carbon Nanotube Devices
  • Logic Elements Comprising Carbon Nanotube Field Effect Transistor (Cntfet) Devices And Methods Of Making Same
  • Optical Component Array Having Adjustable Curvature
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Gas-Phase Functionalization Of Carbon Nanotubes
  • Methods Of Making Electromechanical Three-Trace Junction Devices
  • Storage Elements Using Nanotube Switching Elements
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Stretchable And Foldable Electronic Devices
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Electromechanical Three-Trace Junction Devices
  • Optical Systems Fabricated By Printing-Based Assembly
  • Switching Materials Comprising Mixed Nanoscopic Particles And Carbon Nanotubes And Method Of Making And Using The Same
  • Self-Aligned Cell Integration Scheme
  • Integrated Three-Dimensional Semiconductor System Comprising Nonvolatile Nanotube Field Effect Transistors
  • Memory Elements And Cross Point Switches And Arrays For Same Using Nonvolatile Nanotube Blocks
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Medium Scale Carbon Nanotube Thin Film Integrated Circuits On Flexible Plastic Substrates
  • Nanotube-Based Switching Elements With Multiple Controls And Logic Circuits Having Said Elements
  • Receiver Circuit Using Nanotube-Based Switches And Logic
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Conformable Actively Multiplexed High-Density Surface Electrode Array For Brain Interfacing
  • Memory Arrays Using Nanotube Articles With Reprogrammable Resistance
  • Nanotube Esd Protective Devices And Corresponding Nonvolatile And Volatile Nanotube Switches
  • Process For Fabricating A Nanowire-Based Vertical Transistor Structure
  • Receiver Circuit Using Nanotube-Based Switches And Transistors
  • Nonvolatile Nanotube Diodes And Nonvolatile Nanotube Blocks And Systems Using Same And Methods Of Making Same
  • Volatile Nanotube-Based Switching Elements With Multiple Controls
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Stretchable And Foldable Electronic Devices
  • Printable, Flexible And Stretchable Diamond For Thermal Management
  • Nonvolatile Nanotube Diodes And Nonvolatile Nanotube Blocks And Systems Using Same And Methods Of Making Same
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Thermally Managed Led Arrays Assembled By Printing
  • Transient Devices Designed To Undergo Programmable Transformations
  • Waterproof Stretchable Optoelectronics
  • Resistive Materials Comprising Mixed Nanoscopic Particles And Carbon Nanotubes
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Gas-Phase Functionalization Of Surfaces Of Microelectronic Structures
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Extremely Stretchable Electronics
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Two-Terminal Nanotube Devices Including A Nanotube Bridge And Methods Of Making Same
  • Extremely Stretchable Electronics
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Methods Of Making Electromechanical Three-Trace Junction Devices
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Bistable Latch Circuit Implemented With Nanotube-Based Switching Elements
  • Method Of Aligning Deposited Nanotubes Onto An Etched Feature Using A Spacer
  • Two-Terminal Switching Device Using A Composite Material Of Nanoscopic Particles And Carbon Nanotubes
  • Implantable Biomedical Devices On Bioresorbable Substrates
  • Gas-Phase Functionalization Of Carbon Nanotubes
  • Tri-State Circuit Using Nanotube Switching Elements
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Method And Apparatus For Fabricating A Carbon Nanotube Transistor
  • Nanotube-On-Gate Fet Structures And Applications
  • Nonvolatile Nanotube Programmable Logic Devices And A Nonvolatile Nanotube Field Programmable Gate Array Using Same
  • Nonvolatile Nanotube Programmable Logic Devices And A Nonvolatile Nanotube Field Programmable Gate Array Using Same
  • Nanotube-Based Logic Driver Circuits
  • Optical Systems Fabricated By Printing-Based Assembly
  • Non-Volatile Shadow Latch Using A Nanotube Switch
  • Hybrid Circuit Having Nanotube Memory Cells
  • Methods Of Making Nanotube-Based Switching Elements And Logic Circuits
  • Triodes Using Nanofabric Articles And Methods Of Making The Same
  • Local Bottom Gates For Graphene And Carbon Nanotube Devices
  • Nram Arrays With Nanotube Blocks, Nanotube Traces, And Nanotube Planes And Methods Of Making Same
  • Carbon Nanotube Device Fabrication
  • Catheter Balloon Having Stretchable Integrated Circuitry And Sensor Array
  • Nonvolatile Nanotube Diodes And Nonvolatile Nanotube Blocks And Systems Using Same And Methods Of Making Same
  • Memory Elements And Cross Point Switches And Arrays Of Same Using Nonvolatile Nanotube Blocks
  • Methods And Applications Of Non-Planar Imaging Arrays
  • Embedding Thin Chips In Polymer
  • Uniform Single Walled Carbon Nanotube Network
  • Field Effect Devices Controlled Via A Nanotube Switching Element
  • Atomic Layer Deposition
  • Carbon Nanotubes And Methods Of Forming Same At Low Temperature
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Electromechanical Memory Array Using Nanotube Ribbons And Method For Making Same
  • One-Time Programmable, Non-Volatile Field Effect Devices And Methods Of Making Same
  • Nonvolatile Resistive Memories Having Scalable Two-Terminal Nanotube Switches
  • Carbon Nanotube Device Fabrication
  • Latch Circuits And Operation Circuits Having Scalable Nonvolatile Nanotube Switches As Electronic Fuse Replacement Elements
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Nonvolatile Nanotube Diodes And Nonvolatile Nanotube Blocks And Systems Using Same And Methods Of Making Same
  • Non-Volatile Electromechanical Field Effect Devices And Circuits Using Same And Methods Of Forming Same
  • Two-Terminal Nanotube Devices And Systems And Methods Of Making Same
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Isolation Structure For Deflectable Nanotube Elements
  • Methods For Determining The Resistive States Of Resistive Change Elements
  • Optical Systems Fabricated By Printing-Based Assembly
  • Non-Volatile Composite Nanoscopic Fabric Nand Memory Arrays And Methods Of Making Same
  • Eeproms Using Carbon Nanotubes For Cell Storage
  • Nonvolatile Nanotube Programmable Logic Devices And A Nonvolatile Nanotube Field Programmable Gate Array Using Same
  • Graphene Or Carbon Nanotube Devices With Localized Bottom Gates And Gate Dielectric
  • Integrated Nanotube And Field Effect Switching Devices
  • Nonvolatile Nanotube Diodes And Nonvolatile Nanotube Blocks And Systems Using Same And Methods Of Making Same
  • Compact Electrical Switching Devices With Nanotube Elements, And Methods Of Making Same
  • Circuit Arrays Having Cells With Combinations Of Transistors And Nanotube Switching Elements
  • Nanotube-Based Transfer Devices And Related Circuits
  • Optical Systems Fabricated By Printing-Based Assembly
  • Switching Materials Comprising Mixed Nanoscopic Particles And Carbon Nanotubes And Method Of Making And Using The Same
  • Memory Arrays Using Nanotube Articles With Reprogrammable Resistance
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Nonvolatile Nanotube Programmable Logic Devices And A Nonvolatile Nanotube Field Programmable Gate Array Using Same
  • Suspended Carbon Nanotube Field Effect Transistor
  • Method And Apparatus For Fabricating A Carbon Nanotube Transistor Having Unipolar Characteristics
  • Non-Volatile-Shadow Latch Using A Nanotube Switch
  • Method Of Fabricating A Tunneling Nanotube Field Effect Transistor
  • Stretchable And Foldable Electronic Devices
  • Circuits For Determining The Resistive States Of Resistive Change Elements
  • Systems And Methods For Separating Metallic And Nonmetallic Particles In A Mixed-Particle Suspension
  • Two-Terminal Nanotube Devices And Systems And Methods Of Making Same
  • Flexible Electronic Structure
  • Pattern Transfer Printing By Kinetic Control Of Adhesion To An Elastomeric Stamp
  • Memory Elements And Cross Point Switches And Arrays Of Same Using Nonvolatile Nanotube Blocks
  • Storage Elements Using Nanotube Switching Elements
  • Tunnel Junction Fabrication
  • 1-R Resistive Change Element Arrays Using Resistive Reference Elements
  • Systems, Methods, And Devices Using Stretchable Or Flexible Electronics For Medical Applications
  • Controlled Buckling Structures In Semiconductor Interconnects And Nanomembranes For Stretchable Electronics
  • Molecular Characterization With Carbon Nanotube Control
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Random Access Memory Including Nanotube Switching Elements
  • Protective Cases With Integrated Electronics
  • Nonvolatile Nanotube Programmable Logic Devices And A Nonvolatile Nanotube Field Programmable Gate Array Using Same
  • Logic Elements Comprising Carbon Nanotube Field Effect Transistor (Cntfet) Devices And Methods Of Making Same
  • Methods For Reading And Programming 1-R Resistive Change Element Arrays
  • Nonvolatile Nanotube Diodes And Nonvolatile Nanotube Blocks And Systems Using Same And Methods Of Making Same
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat769

    DOI

    http://dx.doi.org/10.1038/nmat769

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037091961

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12618786


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbon", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electricity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transistors, Electronic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Javey", 
            "givenName": "Ali", 
            "id": "sg:person.0664075604.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664075604.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Materials Science and Engineering, Stanford University, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Hyoungsub", 
            "id": "sg:person.013023743660.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023743660.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Physics, Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brink", 
            "givenName": "Markus", 
            "id": "sg:person.01104516473.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104516473.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Qian", 
            "id": "sg:person.0644127002.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644127002.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ural", 
            "givenName": "Ant", 
            "id": "sg:person.01370005721.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370005721.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Purdue University", 
              "id": "https://www.grid.ac/institutes/grid.169077.e", 
              "name": [
                "School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Jing", 
            "id": "sg:person.01004022460.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004022460.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Materials Science and Engineering, Stanford University, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McIntyre", 
            "givenName": "Paul", 
            "id": "sg:person.01206374121.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206374121.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Physics, Cornell University, Ithaca, New York 14853, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McEuen", 
            "givenName": "Paul", 
            "id": "sg:person.01277202621.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277202621.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Purdue University", 
              "id": "https://www.grid.ac/institutes/grid.169077.e", 
              "name": [
                "School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lundstrom", 
            "givenName": "Mark", 
            "id": "sg:person.0740530764.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740530764.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Chemistry, Stanford University, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dai", 
            "givenName": "Hongjie", 
            "id": "sg:person.01320646106.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0040-6090(02)00117-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002643701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-39947-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007087149", 
              "https://doi.org/10.1007/3-540-39947-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-39947-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007087149", 
              "https://doi.org/10.1007/3-540-39947-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.287.5459.1801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007182871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-9317(99)00330-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007933099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/27632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010179340", 
              "https://doi.org/10.1038/27632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/27632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010179340", 
              "https://doi.org/10.1038/27632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025647r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011337329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025647r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011337329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35079517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012457445", 
              "https://doi.org/10.1038/35079517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35079517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012457445", 
              "https://doi.org/10.1038/35079517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-6090(68)90034-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015047570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-6090(68)90034-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015047570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl015606f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018755856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl015606f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018755856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.106801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022474669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.106801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022474669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025639a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030557884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025639a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030557884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.6082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035438285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.6082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035438285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/29954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047629025", 
              "https://doi.org/10.1038/29954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/29954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047629025", 
              "https://doi.org/10.1038/29954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0169670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055818580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0169670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055818580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp012085b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056046770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp012085b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056046770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025577o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025577o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025584c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025584c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.122477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057686635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.126107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057690217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1331088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057695637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1361065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057698974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1419055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057704790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1467702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057709549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1480877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057710922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1497710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057712896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1499513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057713126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1502188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057713421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.1710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.106801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060823648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.106801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060823648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/16.817590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061096808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062445544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iedm.2001.979456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093484715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iedm.2002.1175937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095225599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iedm.2001.979479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095337029"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-12", 
        "datePublishedReg": "2002-12-01", 
        "description": "The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S approximately 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S x m(-1) (12 microS per tube) and 3,000 cm2 x V(-1) x s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S approximately 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat769", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "High-\u03ba dielectrics for advanced carbon-nanotube transistors and logic gates", 
        "pagination": "241-246", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b0b15a2a2cd7787763a20c85522e7089797266ca42ab01fd9c105310fb7ce89b"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12618786"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat769"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037091961"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat769", 
          "https://app.dimensions.ai/details/publication/pub.1037091961"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54002_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmat769"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat769'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat769'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat769'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat769'


     

    This table displays all metadata directly associated to this object as RDF triples.

    264 TRIPLES      21 PREDICATES      68 URIs      25 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat769 schema:about N0744a1b4921041d2b1d1c88763d11246
    2 Nd26fd3113c8a435da977c5ded636d09e
    3 Ndbed43badf1046eaa833cef2a6aa0986
    4 Nedb5090b9503440c922001e4fb1c03ba
    5 anzsrc-for:10
    6 anzsrc-for:1007
    7 schema:author Nf600156abecb4856b8ecf7cb5af2fd0f
    8 schema:citation sg:pub.10.1007/3-540-39947-x
    9 sg:pub.10.1038/27632
    10 sg:pub.10.1038/29954
    11 sg:pub.10.1038/35079517
    12 https://doi.org/10.1016/0040-6090(68)90034-5
    13 https://doi.org/10.1016/s0040-6090(02)00117-7
    14 https://doi.org/10.1016/s0167-9317(99)00330-5
    15 https://doi.org/10.1021/ja0169670
    16 https://doi.org/10.1021/jp012085b
    17 https://doi.org/10.1021/nl015606f
    18 https://doi.org/10.1021/nl025577o
    19 https://doi.org/10.1021/nl025584c
    20 https://doi.org/10.1021/nl025639a
    21 https://doi.org/10.1021/nl025647r
    22 https://doi.org/10.1063/1.122477
    23 https://doi.org/10.1063/1.126107
    24 https://doi.org/10.1063/1.1331088
    25 https://doi.org/10.1063/1.1361065
    26 https://doi.org/10.1063/1.1419055
    27 https://doi.org/10.1063/1.1467702
    28 https://doi.org/10.1063/1.1480877
    29 https://doi.org/10.1063/1.1497710
    30 https://doi.org/10.1063/1.1499513
    31 https://doi.org/10.1063/1.1502188
    32 https://doi.org/10.1103/physrevlett.84.6082
    33 https://doi.org/10.1103/physrevlett.85.1710
    34 https://doi.org/10.1103/physrevlett.87.106801
    35 https://doi.org/10.1103/physrevlett.89.106801
    36 https://doi.org/10.1103/physrevlett.89.126801
    37 https://doi.org/10.1109/16.817590
    38 https://doi.org/10.1109/iedm.2001.979456
    39 https://doi.org/10.1109/iedm.2001.979479
    40 https://doi.org/10.1109/iedm.2002.1175937
    41 https://doi.org/10.1126/science.1065824
    42 https://doi.org/10.1126/science.287.5459.1801
    43 schema:datePublished 2002-12
    44 schema:datePublishedReg 2002-12-01
    45 schema:description The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S approximately 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S x m(-1) (12 microS per tube) and 3,000 cm2 x V(-1) x s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S approximately 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf N04329bfaca814d0c999b4ea13212c896
    50 N7338e27bbf544ef2b270d58d6ece39ce
    51 sg:journal.1031408
    52 schema:name High-κ dielectrics for advanced carbon-nanotube transistors and logic gates
    53 schema:pagination 241-246
    54 schema:productId N1888ed45cb84446a971dbe945af7abd3
    55 N33d7b2a7f2b24761ac5b457dedbeb0eb
    56 N4bfad2c73cf14c2b99b35acef99d77d1
    57 N6189ffac4c8f4daba98d50f1905b62e5
    58 Nf0e86ed1cece4e019942e862a47df218
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037091961
    60 https://doi.org/10.1038/nmat769
    61 schema:sdDatePublished 2019-04-11T12:14
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher Nc01e5d9575e24802b5d68c8d686af788
    64 schema:url http://www.nature.com/articles/nmat769
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N04329bfaca814d0c999b4ea13212c896 schema:volumeNumber 1
    69 rdf:type schema:PublicationVolume
    70 N0744a1b4921041d2b1d1c88763d11246 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Nanotechnology
    72 rdf:type schema:DefinedTerm
    73 N1888ed45cb84446a971dbe945af7abd3 schema:name doi
    74 schema:value 10.1038/nmat769
    75 rdf:type schema:PropertyValue
    76 N33a4c8596a4244afbe7bbd739c949cf4 rdf:first sg:person.0644127002.60
    77 rdf:rest Ndc8380ca07824c90857922c489920643
    78 N33d7b2a7f2b24761ac5b457dedbeb0eb schema:name readcube_id
    79 schema:value b0b15a2a2cd7787763a20c85522e7089797266ca42ab01fd9c105310fb7ce89b
    80 rdf:type schema:PropertyValue
    81 N377f0d09b56c470da9a0e4ba116d8c54 rdf:first sg:person.01277202621.80
    82 rdf:rest N7dca46a0066e40c0a8923cf10dc2f3b9
    83 N465b35c165474af393a49a4efdf5103c rdf:first sg:person.01320646106.00
    84 rdf:rest rdf:nil
    85 N4bfad2c73cf14c2b99b35acef99d77d1 schema:name pubmed_id
    86 schema:value 12618786
    87 rdf:type schema:PropertyValue
    88 N6189ffac4c8f4daba98d50f1905b62e5 schema:name nlm_unique_id
    89 schema:value 101155473
    90 rdf:type schema:PropertyValue
    91 N6d1b11e882d94cfd8aa670b466bd7846 rdf:first sg:person.01104516473.69
    92 rdf:rest N33a4c8596a4244afbe7bbd739c949cf4
    93 N7338e27bbf544ef2b270d58d6ece39ce schema:issueNumber 4
    94 rdf:type schema:PublicationIssue
    95 N7dca46a0066e40c0a8923cf10dc2f3b9 rdf:first sg:person.0740530764.57
    96 rdf:rest N465b35c165474af393a49a4efdf5103c
    97 Nc01e5d9575e24802b5d68c8d686af788 schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 Nd26fd3113c8a435da977c5ded636d09e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Transistors, Electronic
    101 rdf:type schema:DefinedTerm
    102 Ndbed43badf1046eaa833cef2a6aa0986 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Electricity
    104 rdf:type schema:DefinedTerm
    105 Ndc8380ca07824c90857922c489920643 rdf:first sg:person.01370005721.67
    106 rdf:rest Nfc2dd0f5b3184f0ab329165df0a01db3
    107 Ned9a34841ec14ff582d1038766546150 rdf:first sg:person.013023743660.13
    108 rdf:rest N6d1b11e882d94cfd8aa670b466bd7846
    109 Nedb5090b9503440c922001e4fb1c03ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Carbon
    111 rdf:type schema:DefinedTerm
    112 Nf0e86ed1cece4e019942e862a47df218 schema:name dimensions_id
    113 schema:value pub.1037091961
    114 rdf:type schema:PropertyValue
    115 Nf600156abecb4856b8ecf7cb5af2fd0f rdf:first sg:person.0664075604.09
    116 rdf:rest Ned9a34841ec14ff582d1038766546150
    117 Nf64a67a44e794a2ebd02afaf7c957817 rdf:first sg:person.01206374121.56
    118 rdf:rest N377f0d09b56c470da9a0e4ba116d8c54
    119 Nfc2dd0f5b3184f0ab329165df0a01db3 rdf:first sg:person.01004022460.62
    120 rdf:rest Nf64a67a44e794a2ebd02afaf7c957817
    121 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Technology
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Nanotechnology
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1031408 schema:issn 1476-1122
    128 1476-4660
    129 schema:name Nature Materials
    130 rdf:type schema:Periodical
    131 sg:person.01004022460.62 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
    132 schema:familyName Guo
    133 schema:givenName Jing
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004022460.62
    135 rdf:type schema:Person
    136 sg:person.01104516473.69 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    137 schema:familyName Brink
    138 schema:givenName Markus
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104516473.69
    140 rdf:type schema:Person
    141 sg:person.01206374121.56 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    142 schema:familyName McIntyre
    143 schema:givenName Paul
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206374121.56
    145 rdf:type schema:Person
    146 sg:person.01277202621.80 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    147 schema:familyName McEuen
    148 schema:givenName Paul
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277202621.80
    150 rdf:type schema:Person
    151 sg:person.013023743660.13 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    152 schema:familyName Kim
    153 schema:givenName Hyoungsub
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023743660.13
    155 rdf:type schema:Person
    156 sg:person.01320646106.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    157 schema:familyName Dai
    158 schema:givenName Hongjie
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320646106.00
    160 rdf:type schema:Person
    161 sg:person.01370005721.67 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    162 schema:familyName Ural
    163 schema:givenName Ant
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370005721.67
    165 rdf:type schema:Person
    166 sg:person.0644127002.60 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    167 schema:familyName Wang
    168 schema:givenName Qian
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644127002.60
    170 rdf:type schema:Person
    171 sg:person.0664075604.09 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    172 schema:familyName Javey
    173 schema:givenName Ali
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664075604.09
    175 rdf:type schema:Person
    176 sg:person.0740530764.57 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
    177 schema:familyName Lundstrom
    178 schema:givenName Mark
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740530764.57
    180 rdf:type schema:Person
    181 sg:pub.10.1007/3-540-39947-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007087149
    182 https://doi.org/10.1007/3-540-39947-x
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/27632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010179340
    185 https://doi.org/10.1038/27632
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/29954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047629025
    188 https://doi.org/10.1038/29954
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/35079517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012457445
    191 https://doi.org/10.1038/35079517
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0040-6090(68)90034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015047570
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/s0040-6090(02)00117-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002643701
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/s0167-9317(99)00330-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007933099
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1021/ja0169670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055818580
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1021/jp012085b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056046770
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1021/nl015606f schema:sameAs https://app.dimensions.ai/details/publication/pub.1018755856
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1021/nl025577o schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215303
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1021/nl025584c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215304
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1021/nl025639a schema:sameAs https://app.dimensions.ai/details/publication/pub.1030557884
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1021/nl025647r schema:sameAs https://app.dimensions.ai/details/publication/pub.1011337329
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1063/1.122477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057686635
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1063/1.126107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057690217
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1063/1.1331088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695637
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1063/1.1361065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057698974
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1063/1.1419055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057704790
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1063/1.1467702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057709549
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1063/1.1480877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057710922
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1063/1.1497710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057712896
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1063/1.1499513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713126
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1063/1.1502188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713421
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1103/physrevlett.84.6082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035438285
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1103/physrevlett.85.1710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821734
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1103/physrevlett.87.106801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823648
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1103/physrevlett.89.106801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022474669
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1103/physrevlett.89.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825341
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1109/16.817590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061096808
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1109/iedm.2001.979456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093484715
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1109/iedm.2001.979479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095337029
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1109/iedm.2002.1175937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095225599
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.1065824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445544
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1126/science.287.5459.1801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007182871
    254 rdf:type schema:CreativeWork
    255 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    256 schema:name Department of Chemistry, Stanford University, California 94305, USA
    257 Department of Materials Science and Engineering, Stanford University, California 94305, USA
    258 rdf:type schema:Organization
    259 https://www.grid.ac/institutes/grid.169077.e schema:alternateName Purdue University
    260 schema:name School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
    261 rdf:type schema:Organization
    262 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    263 schema:name Department of Physics, Cornell University, Ithaca, New York 14853, USA
    264 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...