Interface pattern formation in nonlinear dissipative systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-11

AUTHORS

Rohit Trivedi, Shan Liu, Scott Williams

ABSTRACT

The problem of interface pattern selection in nonlinear dissipative systems is critical in many fields of science, occurring in physical, chemical and biological systems. One of the simplest pattern formations is the Saffman-Taylor finger pattern that forms when a viscous fluid is displaced by a less viscous fluid. Such finger-shaped patterns have been observed in distinctly different fields of science (hydrodynamics, combustion and crystal growth) and this has led to a search for a unified concept of pattern formation, as first proposed by the classic work of D'arcy Thomson. Two-dimensional finger-shaped patterns, observed in flame fronts and the ensembled average shape of the diffusion-limited aggregation pattern, have been shown to be similar to Saffman-Taylor finger shapes. Here we present experimental studies that establish that the cell shapes formed during directional solidification of alloys can be described by the form of the Saffman-Taylor finger shape equation when a second phase is present in the intercellular region. More... »

PAGES

157-159

References to SciGraph publications

  • 1984-06. Interdendritic Spacing: Part I. Experimental Studies in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat749

    DOI

    http://dx.doi.org/10.1038/nmat749

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038630959

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12618802


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alloys", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Camphor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nitriles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nonlinear Dynamics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rheology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viscosity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Iowa State University", 
              "id": "https://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Metals and Ceramics Sciences, Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA. trivedi@ameslab.gov"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trivedi", 
            "givenName": "Rohit", 
            "id": "sg:person.01125404132.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Liu", 
            "givenName": "Shan", 
            "id": "sg:person.015313245113.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Williams", 
            "givenName": "Scott", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02644688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954572", 
              "https://doi.org/10.1007/bf02644688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954572", 
              "https://doi.org/10.1007/bf02644688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02644688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954572", 
              "https://doi.org/10.1007/bf02644688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(85)90310-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010350322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(85)90310-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010350322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018738800101379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016656775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018738800101379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016656775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-0248(87)80021-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019051294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1958.0085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033525801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(91)90928-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050207962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0248(91)90928-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050207962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.36.2811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060476499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.36.2811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060476499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.41.6741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060481641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.41.6741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060481641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.42.3499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060482079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.42.3499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060482079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.45.1044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060484683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.45.1044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060484683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.4437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.4437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.2332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.66.2332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060802431"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-11", 
        "datePublishedReg": "2002-11-01", 
        "description": "The problem of interface pattern selection in nonlinear dissipative systems is critical in many fields of science, occurring in physical, chemical and biological systems. One of the simplest pattern formations is the Saffman-Taylor finger pattern that forms when a viscous fluid is displaced by a less viscous fluid. Such finger-shaped patterns have been observed in distinctly different fields of science (hydrodynamics, combustion and crystal growth) and this has led to a search for a unified concept of pattern formation, as first proposed by the classic work of D'arcy Thomson. Two-dimensional finger-shaped patterns, observed in flame fronts and the ensembled average shape of the diffusion-limited aggregation pattern, have been shown to be similar to Saffman-Taylor finger shapes. Here we present experimental studies that establish that the cell shapes formed during directional solidification of alloys can be described by the form of the Saffman-Taylor finger shape equation when a second phase is present in the intercellular region.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat749", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "Interface pattern formation in nonlinear dissipative systems", 
        "pagination": "157-159", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b805045da7c2646baea599a61ccfe3c26da745d0d8c1720a9e518402a00fe4b8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12618802"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat749"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038630959"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat749", 
          "https://app.dimensions.ai/details/publication/pub.1038630959"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54002_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/nmat/journal/v1/n3/full/nmat749.html"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat749'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat749'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat749'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat749'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      51 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat749 schema:about N1363f556b1a14f7aaeebe6a1f00726e6
    2 N252c55e9b36b4fd387e0c94b76536a56
    3 N27f8b90c17e5434aa1938bb0d13c9a0f
    4 N2ee7a69437e1428bb647be31724a7a2e
    5 N444f355239df40bea3fe144796309e34
    6 N7e5758ba00b8432aacd248b3e1fb8be1
    7 N8e29b4749c6147519326d28f870cd003
    8 Nca557af2227f40fd81aea3da7b5f416b
    9 Nd15729f79b4a44d49a0179a3989397bd
    10 Nebbe800fa88c49c480a914b2f9e18048
    11 anzsrc-for:09
    12 anzsrc-for:0915
    13 schema:author N1f3355e79b2e4dcf8372d65d9f9d2f8e
    14 schema:citation sg:pub.10.1007/bf02644688
    15 https://doi.org/10.1016/0022-0248(85)90310-0
    16 https://doi.org/10.1016/0022-0248(91)90928-x
    17 https://doi.org/10.1016/s0022-0248(87)80021-0
    18 https://doi.org/10.1080/00018738800101379
    19 https://doi.org/10.1098/rspa.1958.0085
    20 https://doi.org/10.1103/physreva.36.2811
    21 https://doi.org/10.1103/physreva.41.6741
    22 https://doi.org/10.1103/physreva.42.3499
    23 https://doi.org/10.1103/physreva.45.1044
    24 https://doi.org/10.1103/physreve.48.4437
    25 https://doi.org/10.1103/physrevlett.66.2332
    26 schema:datePublished 2002-11
    27 schema:datePublishedReg 2002-11-01
    28 schema:description The problem of interface pattern selection in nonlinear dissipative systems is critical in many fields of science, occurring in physical, chemical and biological systems. One of the simplest pattern formations is the Saffman-Taylor finger pattern that forms when a viscous fluid is displaced by a less viscous fluid. Such finger-shaped patterns have been observed in distinctly different fields of science (hydrodynamics, combustion and crystal growth) and this has led to a search for a unified concept of pattern formation, as first proposed by the classic work of D'arcy Thomson. Two-dimensional finger-shaped patterns, observed in flame fronts and the ensembled average shape of the diffusion-limited aggregation pattern, have been shown to be similar to Saffman-Taylor finger shapes. Here we present experimental studies that establish that the cell shapes formed during directional solidification of alloys can be described by the form of the Saffman-Taylor finger shape equation when a second phase is present in the intercellular region.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf N26e577a73c0648288c032d9318a3dc4a
    33 N4cb2e657e9334bb9839552fc9cd254ff
    34 sg:journal.1031408
    35 schema:name Interface pattern formation in nonlinear dissipative systems
    36 schema:pagination 157-159
    37 schema:productId N2f7e451de67c4ee9a675006ce0363a13
    38 N6e36d166f2ea4a5cad6b8a646b18b90e
    39 N7504344cb4eb485aaad2a91dfb85458a
    40 N7855e11682af46b193162c60d4c0dfbb
    41 N9522cae2880e4391a4a34229bd9d5fee
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038630959
    43 https://doi.org/10.1038/nmat749
    44 schema:sdDatePublished 2019-04-11T12:14
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N1341bd60b18848578bba93b7e693bcf9
    47 schema:url http://www.nature.com/nmat/journal/v1/n3/full/nmat749.html
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N1206ad0fa19140a4b2e205bc791b2144 rdf:first Nd76b9574f14742ddbdc26e1866c7c615
    52 rdf:rest rdf:nil
    53 N1341bd60b18848578bba93b7e693bcf9 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N1363f556b1a14f7aaeebe6a1f00726e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    56 schema:name Surface Properties
    57 rdf:type schema:DefinedTerm
    58 N1f3355e79b2e4dcf8372d65d9f9d2f8e rdf:first sg:person.01125404132.43
    59 rdf:rest Na452c35927e04066910998ecf16272de
    60 N252c55e9b36b4fd387e0c94b76536a56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Alloys
    62 rdf:type schema:DefinedTerm
    63 N26e577a73c0648288c032d9318a3dc4a schema:issueNumber 3
    64 rdf:type schema:PublicationIssue
    65 N27f8b90c17e5434aa1938bb0d13c9a0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    66 schema:name Sensitivity and Specificity
    67 rdf:type schema:DefinedTerm
    68 N2ee7a69437e1428bb647be31724a7a2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    69 schema:name Viscosity
    70 rdf:type schema:DefinedTerm
    71 N2f7e451de67c4ee9a675006ce0363a13 schema:name pubmed_id
    72 schema:value 12618802
    73 rdf:type schema:PropertyValue
    74 N444f355239df40bea3fe144796309e34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    75 schema:name Rheology
    76 rdf:type schema:DefinedTerm
    77 N4cb2e657e9334bb9839552fc9cd254ff schema:volumeNumber 1
    78 rdf:type schema:PublicationVolume
    79 N6e36d166f2ea4a5cad6b8a646b18b90e schema:name nlm_unique_id
    80 schema:value 101155473
    81 rdf:type schema:PropertyValue
    82 N7504344cb4eb485aaad2a91dfb85458a schema:name dimensions_id
    83 schema:value pub.1038630959
    84 rdf:type schema:PropertyValue
    85 N7855e11682af46b193162c60d4c0dfbb schema:name doi
    86 schema:value 10.1038/nmat749
    87 rdf:type schema:PropertyValue
    88 N7e5758ba00b8432aacd248b3e1fb8be1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Models, Theoretical
    90 rdf:type schema:DefinedTerm
    91 N8e29b4749c6147519326d28f870cd003 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Nonlinear Dynamics
    93 rdf:type schema:DefinedTerm
    94 N9522cae2880e4391a4a34229bd9d5fee schema:name readcube_id
    95 schema:value b805045da7c2646baea599a61ccfe3c26da745d0d8c1720a9e518402a00fe4b8
    96 rdf:type schema:PropertyValue
    97 Na452c35927e04066910998ecf16272de rdf:first sg:person.015313245113.30
    98 rdf:rest N1206ad0fa19140a4b2e205bc791b2144
    99 Nca557af2227f40fd81aea3da7b5f416b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Camphor
    101 rdf:type schema:DefinedTerm
    102 Nd15729f79b4a44d49a0179a3989397bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Nitriles
    104 rdf:type schema:DefinedTerm
    105 Nd76b9574f14742ddbdc26e1866c7c615 schema:familyName Williams
    106 schema:givenName Scott
    107 rdf:type schema:Person
    108 Nebbe800fa88c49c480a914b2f9e18048 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Materials Testing
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Engineering
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Interdisciplinary Engineering
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1031408 schema:issn 1476-1122
    118 1476-4660
    119 schema:name Nature Materials
    120 rdf:type schema:Periodical
    121 sg:person.01125404132.43 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
    122 schema:familyName Trivedi
    123 schema:givenName Rohit
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43
    125 rdf:type schema:Person
    126 sg:person.015313245113.30 schema:familyName Liu
    127 schema:givenName Shan
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30
    129 rdf:type schema:Person
    130 sg:pub.10.1007/bf02644688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954572
    131 https://doi.org/10.1007/bf02644688
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0022-0248(85)90310-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010350322
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/0022-0248(91)90928-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050207962
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/s0022-0248(87)80021-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019051294
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1080/00018738800101379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016656775
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1098/rspa.1958.0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033525801
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physreva.36.2811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476499
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physreva.41.6741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481641
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physreva.42.3499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060482079
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physreva.45.1044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060484683
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physreve.48.4437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715944
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevlett.66.2332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802431
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
    156 schema:name Metals and Ceramics Sciences, Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA. trivedi@ameslab.gov
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...