Interface pattern formation in nonlinear dissipative systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-10-13

AUTHORS

Rohit Trivedi, Shan Liu, Scott Williams

ABSTRACT

The problem of interface pattern selection in nonlinear dissipative systems is critical in many fields of science, occurring in physical, chemical and biological systems. One of the simplest pattern formations is the Saffman–Taylor finger pattern1 that forms when a viscous fluid is displaced by a less viscous fluid. Such finger-shaped patterns have been observed in distinctly different fields of science2,3,4 (hydrodynamics, combustion and crystal growth) and this has led to a search for a unified concept of pattern formation, as first proposed by the classic work of D'arcy Thomson5. Two-dimensional finger-shaped patterns, observed in flame fronts6 and the ensembled average shape of the diffusion-limited aggregation pattern, have been shown to be similar to Saffman–Taylor finger shapes7,8. Here we present experimental studies that establish that the cell shapes formed during directional solidification of alloys can be described by the form of the Saffman–Taylor finger shape equation when a second phase is present in the intercellular region. More... »

PAGES

157-159

References to SciGraph publications

  • 1984-06-01. Interdendritic Spacing: Part I. Experimental Studies in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat749

    DOI

    http://dx.doi.org/10.1038/nmat749

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038630959

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12618802


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alloys", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Camphor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nitriles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nonlinear Dynamics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rheology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viscosity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA", 
              "id": "http://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trivedi", 
            "givenName": "Rohit", 
            "id": "sg:person.01125404132.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA", 
              "id": "http://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Shan", 
            "id": "sg:person.015313245113.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA", 
              "id": "http://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "Scott", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02644688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001954572", 
              "https://doi.org/10.1007/bf02644688"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-10-13", 
        "datePublishedReg": "2002-10-13", 
        "description": "The problem of interface pattern selection in nonlinear dissipative systems is critical in many fields of science, occurring in physical, chemical and biological systems. One of the simplest pattern formations is the Saffman\u2013Taylor finger pattern1 that forms when a viscous fluid is displaced by a less viscous fluid. Such finger-shaped patterns have been observed in distinctly different fields of science2,3,4 (hydrodynamics, combustion and crystal growth) and this has led to a search for a unified concept of pattern formation, as first proposed by the classic work of D'arcy Thomson5. Two-dimensional finger-shaped patterns, observed in flame fronts6 and the ensembled average shape of the diffusion-limited aggregation pattern, have been shown to be similar to Saffman\u2013Taylor finger shapes7,8. Here we present experimental studies that establish that the cell shapes formed during directional solidification of alloys can be described by the form of the Saffman\u2013Taylor finger shape equation when a second phase is present in the intercellular region.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmat749", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "viscous fluid", 
          "directional solidification", 
          "interface pattern formation", 
          "experimental study", 
          "intercellular regions", 
          "alloy", 
          "solidification", 
          "second phase", 
          "fluid", 
          "shape equation", 
          "pattern formation", 
          "shape", 
          "field", 
          "Saffman-Taylor fingers", 
          "nonlinear dissipative systems", 
          "system", 
          "different fields", 
          "fields of science", 
          "formation", 
          "pattern selection", 
          "equations", 
          "dissipative systems", 
          "average shape", 
          "phase", 
          "work", 
          "chemicals", 
          "biological systems", 
          "problem", 
          "concept", 
          "region", 
          "patterns", 
          "finger", 
          "selection", 
          "unified concept", 
          "form", 
          "study", 
          "science", 
          "cell shape", 
          "pattern1", 
          "aggregation patterns", 
          "classic work", 
          "search", 
          "interface pattern selection", 
          "simplest pattern formations", 
          "Saffman\u2013Taylor finger pattern1", 
          "finger pattern1", 
          "Such finger-shaped patterns", 
          "finger-shaped patterns", 
          "D'arcy Thomson5", 
          "Thomson5", 
          "Two-dimensional finger-shaped patterns", 
          "flame fronts6", 
          "fronts6", 
          "ensembled average shape", 
          "diffusion-limited aggregation pattern", 
          "Saffman\u2013Taylor finger shape equation", 
          "finger shape equation"
        ], 
        "name": "Interface pattern formation in nonlinear dissipative systems", 
        "pagination": "157-159", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038630959"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat749"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12618802"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat749", 
          "https://app.dimensions.ai/details/publication/pub.1038630959"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_359.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmat749"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat749'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat749'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat749'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat749'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      94 URIs      85 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat749 schema:about N16fcda892bc0453ebead55af9ecdd76f
    2 N200c356857184fbfb7c1cb5ea5dccfa6
    3 N5599f677c6564bddac725be527e0d887
    4 N6b5be4af98ce4aec8b528bbac95a1322
    5 N6e4f2434450e452a9b32012e39bd21e8
    6 N785015c4fec3479ca97e5e92190b45ad
    7 N9475a8ddacf74187ba9710619cde5597
    8 Ncbd3baeb95bd4c09afb5178d743a52c3
    9 Nd67a85a1c72944209b61a39716b54cf2
    10 Ne99e0d815abd4039b6a9855dc364fe94
    11 anzsrc-for:09
    12 anzsrc-for:0915
    13 schema:author N60274010ae5b4f11b6c4d90c865c0adc
    14 schema:citation sg:pub.10.1007/bf02644688
    15 schema:datePublished 2002-10-13
    16 schema:datePublishedReg 2002-10-13
    17 schema:description The problem of interface pattern selection in nonlinear dissipative systems is critical in many fields of science, occurring in physical, chemical and biological systems. One of the simplest pattern formations is the Saffman–Taylor finger pattern1 that forms when a viscous fluid is displaced by a less viscous fluid. Such finger-shaped patterns have been observed in distinctly different fields of science2,3,4 (hydrodynamics, combustion and crystal growth) and this has led to a search for a unified concept of pattern formation, as first proposed by the classic work of D'arcy Thomson5. Two-dimensional finger-shaped patterns, observed in flame fronts6 and the ensembled average shape of the diffusion-limited aggregation pattern, have been shown to be similar to Saffman–Taylor finger shapes7,8. Here we present experimental studies that establish that the cell shapes formed during directional solidification of alloys can be described by the form of the Saffman–Taylor finger shape equation when a second phase is present in the intercellular region.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N2e4e6a640e6a499ab964cb9007e8c2af
    22 Nb3f9c2246aa847bd89ca96ca1d28cde8
    23 sg:journal.1031408
    24 schema:keywords D'arcy Thomson5
    25 Saffman-Taylor fingers
    26 Saffman–Taylor finger pattern1
    27 Saffman–Taylor finger shape equation
    28 Such finger-shaped patterns
    29 Thomson5
    30 Two-dimensional finger-shaped patterns
    31 aggregation patterns
    32 alloy
    33 average shape
    34 biological systems
    35 cell shape
    36 chemicals
    37 classic work
    38 concept
    39 different fields
    40 diffusion-limited aggregation pattern
    41 directional solidification
    42 dissipative systems
    43 ensembled average shape
    44 equations
    45 experimental study
    46 field
    47 fields of science
    48 finger
    49 finger pattern1
    50 finger shape equation
    51 finger-shaped patterns
    52 flame fronts6
    53 fluid
    54 form
    55 formation
    56 fronts6
    57 intercellular regions
    58 interface pattern formation
    59 interface pattern selection
    60 nonlinear dissipative systems
    61 pattern formation
    62 pattern selection
    63 pattern1
    64 patterns
    65 phase
    66 problem
    67 region
    68 science
    69 search
    70 second phase
    71 selection
    72 shape
    73 shape equation
    74 simplest pattern formations
    75 solidification
    76 study
    77 system
    78 unified concept
    79 viscous fluid
    80 work
    81 schema:name Interface pattern formation in nonlinear dissipative systems
    82 schema:pagination 157-159
    83 schema:productId N0c4742f58f434afebbb6da340b56a6ee
    84 N8722a21a9bb04b61815db0d16b00bbea
    85 Ne63b4ad269e84e43997f61e36539d28a
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038630959
    87 https://doi.org/10.1038/nmat749
    88 schema:sdDatePublished 2021-12-01T19:14
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N9aebbc43eba848838a223773d1d1a902
    91 schema:url https://doi.org/10.1038/nmat749
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N0c4742f58f434afebbb6da340b56a6ee schema:name doi
    96 schema:value 10.1038/nmat749
    97 rdf:type schema:PropertyValue
    98 N16fcda892bc0453ebead55af9ecdd76f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Camphor
    100 rdf:type schema:DefinedTerm
    101 N200c356857184fbfb7c1cb5ea5dccfa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Surface Properties
    103 rdf:type schema:DefinedTerm
    104 N2e4e6a640e6a499ab964cb9007e8c2af schema:issueNumber 3
    105 rdf:type schema:PublicationIssue
    106 N5599f677c6564bddac725be527e0d887 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Sensitivity and Specificity
    108 rdf:type schema:DefinedTerm
    109 N60274010ae5b4f11b6c4d90c865c0adc rdf:first sg:person.01125404132.43
    110 rdf:rest N87d13b7f128f4e0b9b380a1ead2c69de
    111 N6b5be4af98ce4aec8b528bbac95a1322 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Models, Theoretical
    113 rdf:type schema:DefinedTerm
    114 N6e4f2434450e452a9b32012e39bd21e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Viscosity
    116 rdf:type schema:DefinedTerm
    117 N785015c4fec3479ca97e5e92190b45ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Rheology
    119 rdf:type schema:DefinedTerm
    120 N79ee20f7593645909fba30249a1028ba schema:affiliation grid-institutes:grid.34421.30
    121 schema:familyName Williams
    122 schema:givenName Scott
    123 rdf:type schema:Person
    124 N8722a21a9bb04b61815db0d16b00bbea schema:name pubmed_id
    125 schema:value 12618802
    126 rdf:type schema:PropertyValue
    127 N87d13b7f128f4e0b9b380a1ead2c69de rdf:first sg:person.015313245113.30
    128 rdf:rest Nd4a816c073d149e7a81824a98a491e05
    129 N9475a8ddacf74187ba9710619cde5597 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Nitriles
    131 rdf:type schema:DefinedTerm
    132 N9aebbc43eba848838a223773d1d1a902 schema:name Springer Nature - SN SciGraph project
    133 rdf:type schema:Organization
    134 Nb3f9c2246aa847bd89ca96ca1d28cde8 schema:volumeNumber 1
    135 rdf:type schema:PublicationVolume
    136 Ncbd3baeb95bd4c09afb5178d743a52c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Nonlinear Dynamics
    138 rdf:type schema:DefinedTerm
    139 Nd4a816c073d149e7a81824a98a491e05 rdf:first N79ee20f7593645909fba30249a1028ba
    140 rdf:rest rdf:nil
    141 Nd67a85a1c72944209b61a39716b54cf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Materials Testing
    143 rdf:type schema:DefinedTerm
    144 Ne63b4ad269e84e43997f61e36539d28a schema:name dimensions_id
    145 schema:value pub.1038630959
    146 rdf:type schema:PropertyValue
    147 Ne99e0d815abd4039b6a9855dc364fe94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Alloys
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Engineering
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Interdisciplinary Engineering
    155 rdf:type schema:DefinedTerm
    156 sg:journal.1031408 schema:issn 1476-1122
    157 1476-4660
    158 schema:name Nature Materials
    159 schema:publisher Springer Nature
    160 rdf:type schema:Periodical
    161 sg:person.01125404132.43 schema:affiliation grid-institutes:grid.34421.30
    162 schema:familyName Trivedi
    163 schema:givenName Rohit
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125404132.43
    165 rdf:type schema:Person
    166 sg:person.015313245113.30 schema:affiliation grid-institutes:grid.34421.30
    167 schema:familyName Liu
    168 schema:givenName Shan
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015313245113.30
    170 rdf:type schema:Person
    171 sg:pub.10.1007/bf02644688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001954572
    172 https://doi.org/10.1007/bf02644688
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.34421.30 schema:alternateName Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA
    175 schema:name Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Metals and Ceramics Sciences, Iowa State University, 50011, Ames, Iowa, USA
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...