Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05

AUTHORS

Paul E. Pearce, Arnaud J. Perez, Gwenaelle Rousse, Mathieu Saubanère, Dmitry Batuk, Dominique Foix, Eric McCalla, Artem M. Abakumov, Gustaaf Van Tendeloo, Marie-Liesse Doublet, Jean-Marie Tarascon

ABSTRACT

Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries. More... »

PAGES

580-586

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat4864

DOI

http://dx.doi.org/10.1038/nmat4864

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084129260

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28250444


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et de l\u2019Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "Sorbonne Universit\u00e9s\u2014UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pearce", 
        "givenName": "Paul E.", 
        "id": "sg:person.015652516447.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652516447.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et de l\u2019Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "Sorbonne Universit\u00e9s\u2014UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perez", 
        "givenName": "Arnaud J.", 
        "id": "sg:person.016450077047.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450077047.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et de l\u2019Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "Sorbonne Universit\u00e9s\u2014UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rousse", 
        "givenName": "Gwenaelle", 
        "id": "sg:person.0707044675.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707044675.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Charles Gerhardt", 
          "id": "https://www.grid.ac/institutes/grid.462034.7", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "Institut Charles Gerhardt, UMR 5253, CNRS and Universit\u00e9 de Montpellier, Place Eug\u00e8ne Bataillon, F-34095 Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauban\u00e8re", 
        "givenName": "Mathieu", 
        "id": "sg:person.015210325211.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210325211.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et de l\u2019Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France", 
            "EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batuk", 
        "givenName": "Dmitry", 
        "id": "sg:person.0642573016.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642573016.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "IPREM/ECP (UMR 5254), Universit\u00e9 de Pau, 2 Avenue Pierre Angot, 64053 Pau Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foix", 
        "givenName": "Dominique", 
        "id": "sg:person.0704305365.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704305365.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et de l\u2019Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "CEMS, University of Minnesota, 421 Washington Avenue, Minneapolis, Minnesota 55455, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCalla", 
        "givenName": "Eric", 
        "id": "sg:person.01024443073.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024443073.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium", 
            "Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abakumov", 
        "givenName": "Artem M.", 
        "id": "sg:person.01246706707.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246706707.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Antwerp", 
          "id": "https://www.grid.ac/institutes/grid.5284.b", 
          "name": [
            "EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Tendeloo", 
        "givenName": "Gustaaf", 
        "id": "sg:person.0642063214.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642063214.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Charles Gerhardt", 
          "id": "https://www.grid.ac/institutes/grid.462034.7", 
          "name": [
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "Institut Charles Gerhardt, UMR 5253, CNRS and Universit\u00e9 de Montpellier, Place Eug\u00e8ne Bataillon, F-34095 Montpellier, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doublet", 
        "givenName": "Marie-Liesse", 
        "id": "sg:person.014247162643.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247162643.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Coll\u00e8ge de France, Chimie du Solide et de l\u2019Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France", 
            "Sorbonne Universit\u00e9s\u2014UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarascon", 
        "givenName": "Jean-Marie", 
        "id": "sg:person.01364322774.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.aac8260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001033756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3382344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002352738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852838", 
          "https://doi.org/10.1038/nmat3699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451652a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007137639", 
          "https://doi.org/10.1038/451652a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b702425h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008420082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008708156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009684852", 
          "https://doi.org/10.1038/ncomms5203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.19960020904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012406009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.245134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.245134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013726443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1504901112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016035103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017464551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017464551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1837571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021283991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.077202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023212009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.077202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023212009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2010.08.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025953845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0368-2048(76)80015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027931361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567739476001551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028010813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028300488", 
          "https://doi.org/10.1038/35104644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028300488", 
          "https://doi.org/10.1038/35104644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028644902", 
          "https://doi.org/10.1038/nmat4479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elecom.2004.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029212619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1413182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029813772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032548579", 
          "https://doi.org/10.1038/nmat4137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036741104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm4022358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037439570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10587259808045307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040670909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040670909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr3001862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055420621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.4709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.4709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1471541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bk-1992-0499.ch008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089362668"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05", 
    "datePublishedReg": "2017-05-01", 
    "description": "Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300\u2009mAh\u2009g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a \u03b2-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5\u2009e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, \u03b2-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4\u2009V versus Li+/Li0, as equivalently observed in the layered \u03b1-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat4864", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4273984", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode\u00a0\u03b2-Li2IrO3", 
    "pagination": "580-586", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fcadf6dd09edb097b96eb5a991256a16a3c042927afc8ea6bea8fb87302fb8de"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28250444"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat4864"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084129260"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat4864", 
      "https://app.dimensions.ai/details/publication/pub.1084129260"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29181_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmat/journal/v16/n5/full/nmat4864.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat4864'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat4864'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat4864'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat4864'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat4864 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf599c93898fb43a2840664a78606b8de
4 schema:citation sg:pub.10.1038/35104644
5 sg:pub.10.1038/451652a
6 sg:pub.10.1038/ncomms5203
7 sg:pub.10.1038/nmat3699
8 sg:pub.10.1038/nmat4137
9 sg:pub.10.1038/nmat4479
10 https://doi.org/10.1002/chem.19960020904
11 https://doi.org/10.1002/jcc.21759
12 https://doi.org/10.1016/0368-2048(76)80015-1
13 https://doi.org/10.1016/0927-0256(96)00008-0
14 https://doi.org/10.1016/j.cpc.2010.08.033
15 https://doi.org/10.1016/j.elecom.2004.08.002
16 https://doi.org/10.1021/bk-1992-0499.ch008
17 https://doi.org/10.1021/cm4022358
18 https://doi.org/10.1021/cr3001862
19 https://doi.org/10.1039/b702425h
20 https://doi.org/10.1063/1.3382344
21 https://doi.org/10.1073/pnas.1504901112
22 https://doi.org/10.1080/10587259808045307
23 https://doi.org/10.1103/physrevb.47.558
24 https://doi.org/10.1103/physrevb.5.4709
25 https://doi.org/10.1103/physrevb.57.1505
26 https://doi.org/10.1103/physrevb.90.205116
27 https://doi.org/10.1103/physrevb.90.205126
28 https://doi.org/10.1103/physrevb.91.245134
29 https://doi.org/10.1103/physrevlett.114.077202
30 https://doi.org/10.1103/physrevlett.77.3865
31 https://doi.org/10.1107/s0567739476001551
32 https://doi.org/10.1126/science.aac8260
33 https://doi.org/10.1149/1.1413182
34 https://doi.org/10.1149/1.1471541
35 https://doi.org/10.1149/1.1837571
36 schema:datePublished 2017-05
37 schema:datePublishedReg 2017-05-01
38 schema:description Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g<sup>-1</sup>. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li<sub>2</sub>IrO<sub>3</sub> phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e<sup>-</sup> per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (M<sup>n+</sup>) and anionic (O<sub>2</sub>)<sup>n-</sup> redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li<sub>2</sub>IrO<sub>3</sub> presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir<sup>4+</sup> at potentials as low as 3.4 V versus Li<sup>+</sup>/Li<sup>0</sup>, as equivalently observed in the layered α-Li<sub>2</sub>IrO<sub>3</sub> polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N7f0685433c5948d19bd67518a5a1bd77
43 Na0febff5985b4dc1aaf12e5308f1dcd7
44 sg:journal.1031408
45 schema:name Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3
46 schema:pagination 580-586
47 schema:productId N2e69b292df614a7ba2f6261e31e22422
48 N321caf484e5140b49c1542d6d42be25d
49 N58d5cfbde3ba40e1ba5de24fb1dad1b3
50 Ne008178c0fb94f7189c359ced3ac46f7
51 Nfcf7e0f9be0b4a249579583e402af5fb
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129260
53 https://doi.org/10.1038/nmat4864
54 schema:sdDatePublished 2019-04-11T11:50
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N3cc7e60b5da54cb895c27a2e90d10a5d
57 schema:url http://www.nature.com/nmat/journal/v16/n5/full/nmat4864.html
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N078fe77718004612a2cf22fb031b66f8 rdf:first sg:person.01246706707.42
62 rdf:rest N8f9ab24bfbd849458e8afb92a7542aea
63 N0fc2527ef69044b780f8bfc9d906f036 rdf:first sg:person.014247162643.07
64 rdf:rest Naf5a55aa85c74b818751d7571dd83484
65 N2e69b292df614a7ba2f6261e31e22422 schema:name doi
66 schema:value 10.1038/nmat4864
67 rdf:type schema:PropertyValue
68 N321caf484e5140b49c1542d6d42be25d schema:name dimensions_id
69 schema:value pub.1084129260
70 rdf:type schema:PropertyValue
71 N3cc7e60b5da54cb895c27a2e90d10a5d schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N49e768200cc5402c82bdd8bc8e55af64 rdf:first sg:person.0704305365.14
74 rdf:rest Ncc82f893ebf2447c8dbade9ffb15d1a0
75 N58d5cfbde3ba40e1ba5de24fb1dad1b3 schema:name nlm_unique_id
76 schema:value 101155473
77 rdf:type schema:PropertyValue
78 N796e8e2c4a174a4e8522e140c830b3c7 rdf:first sg:person.016450077047.60
79 rdf:rest Ncc33866f045a4969b3927ad058ace2d4
80 N7f0685433c5948d19bd67518a5a1bd77 schema:volumeNumber 16
81 rdf:type schema:PublicationVolume
82 N8f9ab24bfbd849458e8afb92a7542aea rdf:first sg:person.0642063214.31
83 rdf:rest N0fc2527ef69044b780f8bfc9d906f036
84 N972533a382bd49a08b8f35b5dc6ce53c rdf:first sg:person.0642573016.95
85 rdf:rest N49e768200cc5402c82bdd8bc8e55af64
86 Na0febff5985b4dc1aaf12e5308f1dcd7 schema:issueNumber 5
87 rdf:type schema:PublicationIssue
88 Naf5a55aa85c74b818751d7571dd83484 rdf:first sg:person.01364322774.51
89 rdf:rest rdf:nil
90 Nc7abb53a072743ac92f34b64b18811e9 rdf:first sg:person.015210325211.60
91 rdf:rest N972533a382bd49a08b8f35b5dc6ce53c
92 Ncc33866f045a4969b3927ad058ace2d4 rdf:first sg:person.0707044675.37
93 rdf:rest Nc7abb53a072743ac92f34b64b18811e9
94 Ncc82f893ebf2447c8dbade9ffb15d1a0 rdf:first sg:person.01024443073.62
95 rdf:rest N078fe77718004612a2cf22fb031b66f8
96 Ne008178c0fb94f7189c359ced3ac46f7 schema:name pubmed_id
97 schema:value 28250444
98 rdf:type schema:PropertyValue
99 Nf599c93898fb43a2840664a78606b8de rdf:first sg:person.015652516447.75
100 rdf:rest N796e8e2c4a174a4e8522e140c830b3c7
101 Nfcf7e0f9be0b4a249579583e402af5fb schema:name readcube_id
102 schema:value fcadf6dd09edb097b96eb5a991256a16a3c042927afc8ea6bea8fb87302fb8de
103 rdf:type schema:PropertyValue
104 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
105 schema:name Chemical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Chemistry (incl. Structural)
109 rdf:type schema:DefinedTerm
110 sg:grant.4273984 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat4864
111 rdf:type schema:MonetaryGrant
112 sg:journal.1031408 schema:issn 1476-1122
113 1476-4660
114 schema:name Nature Materials
115 rdf:type schema:Periodical
116 sg:person.01024443073.62 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
117 schema:familyName McCalla
118 schema:givenName Eric
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024443073.62
120 rdf:type schema:Person
121 sg:person.01246706707.42 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
122 schema:familyName Abakumov
123 schema:givenName Artem M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246706707.42
125 rdf:type schema:Person
126 sg:person.01364322774.51 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
127 schema:familyName Tarascon
128 schema:givenName Jean-Marie
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364322774.51
130 rdf:type schema:Person
131 sg:person.014247162643.07 schema:affiliation https://www.grid.ac/institutes/grid.462034.7
132 schema:familyName Doublet
133 schema:givenName Marie-Liesse
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247162643.07
135 rdf:type schema:Person
136 sg:person.015210325211.60 schema:affiliation https://www.grid.ac/institutes/grid.462034.7
137 schema:familyName Saubanère
138 schema:givenName Mathieu
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210325211.60
140 rdf:type schema:Person
141 sg:person.015652516447.75 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
142 schema:familyName Pearce
143 schema:givenName Paul E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015652516447.75
145 rdf:type schema:Person
146 sg:person.016450077047.60 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
147 schema:familyName Perez
148 schema:givenName Arnaud J.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450077047.60
150 rdf:type schema:Person
151 sg:person.0642063214.31 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
152 schema:familyName Van Tendeloo
153 schema:givenName Gustaaf
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642063214.31
155 rdf:type schema:Person
156 sg:person.0642573016.95 schema:affiliation https://www.grid.ac/institutes/grid.5284.b
157 schema:familyName Batuk
158 schema:givenName Dmitry
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642573016.95
160 rdf:type schema:Person
161 sg:person.0704305365.14 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
162 schema:familyName Foix
163 schema:givenName Dominique
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704305365.14
165 rdf:type schema:Person
166 sg:person.0707044675.37 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
167 schema:familyName Rousse
168 schema:givenName Gwenaelle
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707044675.37
170 rdf:type schema:Person
171 sg:pub.10.1038/35104644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028300488
172 https://doi.org/10.1038/35104644
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/451652a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007137639
175 https://doi.org/10.1038/451652a
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms5203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009684852
178 https://doi.org/10.1038/ncomms5203
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat3699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004852838
181 https://doi.org/10.1038/nmat3699
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat4137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032548579
184 https://doi.org/10.1038/nmat4137
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nmat4479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028644902
187 https://doi.org/10.1038/nmat4479
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/chem.19960020904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012406009
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/jcc.21759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036741104
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0368-2048(76)80015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027931361
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.cpc.2010.08.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025953845
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.elecom.2004.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029212619
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/bk-1992-0499.ch008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089362668
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/cm4022358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037439570
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/cr3001862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055420621
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1039/b702425h schema:sameAs https://app.dimensions.ai/details/publication/pub.1008420082
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.3382344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002352738
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.1504901112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016035103
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1080/10587259808045307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140839
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.5.4709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572220
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.57.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587642
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.90.205116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017464551
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevb.90.205126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040670909
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevb.91.245134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013726443
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.114.077202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023212009
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1107/s0567739476001551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028010813
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.aac8260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001033756
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1149/1.1413182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029813772
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1149/1.1471541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187311
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1149/1.1837571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283991
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
242 schema:name CEMS, University of Minnesota, 421 Washington Avenue, Minneapolis, Minnesota 55455, USA
243 Collège de France, Chimie du Solide et de l’Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
244 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.454320.4 schema:alternateName Skolkovo Institute of Science and Technology
247 schema:name EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
248 Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia
249 rdf:type schema:Organization
250 https://www.grid.ac/institutes/grid.462034.7 schema:alternateName Institut Charles Gerhardt
251 schema:name Institut Charles Gerhardt, UMR 5253, CNRS and Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier, France
252 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
255 schema:name Collège de France, Chimie du Solide et de l’Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
256 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
257 Sorbonne Universités—UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.494528.6 schema:alternateName Research Network on Electrochemical Energy Storage
260 schema:name IPREM/ECP (UMR 5254), Université de Pau, 2 Avenue Pierre Angot, 64053 Pau Cedex 9, France
261 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.5284.b schema:alternateName University of Antwerp
264 schema:name Collège de France, Chimie du Solide et de l’Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
265 EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...