Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03-09

AUTHORS

D. C. Larbalestier, J. Jiang, U. P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N. C. Craig, P. J. Lee, E. E. Hellstrom

ABSTRACT

Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, Jc. To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O7−x and (Bi, Pb)2Sr2Ca2Cu3O10−x are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O8−x (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high Jc of 2,500 A mm−2 at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries. More... »

PAGES

375-381

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat3887

DOI

http://dx.doi.org/10.1038/nmat3887

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040651649

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24608141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larbalestier", 
        "givenName": "D. C.", 
        "id": "sg:person.013512370724.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512370724.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "J.", 
        "id": "sg:person.01154110202.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trociewitz", 
        "givenName": "U. P.", 
        "id": "sg:person.011674377565.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011674377565.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kametani", 
        "givenName": "F.", 
        "id": "sg:person.01241160331.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241160331.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Organization for Nuclear Research, Geneva CH-1211, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.9132.9", 
          "name": [
            "European Organization for Nuclear Research, Geneva CH-1211, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheuerlein", 
        "givenName": "C.", 
        "id": "sg:person.012324164051.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324164051.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalban-Canassy", 
        "givenName": "M.", 
        "id": "sg:person.0703055220.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703055220.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matras", 
        "givenName": "M.", 
        "id": "sg:person.0751170420.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751170420.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "P.", 
        "id": "sg:person.014142652431.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142652431.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Craig", 
        "givenName": "N. C.", 
        "id": "sg:person.011523776553.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523776553.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "P. J.", 
        "id": "sg:person.014376662537.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376662537.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA", 
          "id": "http://www.grid.ac/institutes/grid.481548.4", 
          "name": [
            "Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hellstrom", 
        "givenName": "E. E.", 
        "id": "sg:person.0632002631.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005557093", 
          "https://doi.org/10.1038/nmat3333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000028211", 
          "https://doi.org/10.1038/35104654"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03-09", 
    "datePublishedReg": "2014-03-09", 
    "description": "Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, Jc. To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O7\u2212x and (Bi, Pb)2Sr2Ca2Cu3O10\u2212x are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O8\u2212x (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high Jc of 2,500 A mm\u22122 at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nmat3887", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3479346", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "high-temperature cuprate superconductors", 
      "cuprate superconductors", 
      "high-angle grain boundaries", 
      "high Jc", 
      "critical current density", 
      "non-ideal geometry", 
      "grain boundaries", 
      "HTS conductors", 
      "arbitrary geometry", 
      "high-field NMR magnet", 
      "magnetic field", 
      "background field", 
      "grain boundary properties", 
      "superconductors", 
      "high aspect ratio", 
      "Jc", 
      "resonance limit", 
      "Nb3Sn technology", 
      "boundary obstacles", 
      "current density", 
      "boundary properties", 
      "conductors", 
      "aspect ratio", 
      "NMR magnet", 
      "small coil", 
      "geometry", 
      "boundary limits", 
      "magnets", 
      "macroscopic texture", 
      "large potential", 
      "field", 
      "anisotropy", 
      "boundaries", 
      "limit", 
      "coil", 
      "Bi", 
      "tape", 
      "properties", 
      "technology", 
      "density", 
      "texture", 
      "generation", 
      "principal market", 
      "ratio", 
      "form", 
      "obstacles", 
      "values", 
      "demonstration", 
      "potential", 
      "presence", 
      "attributes", 
      "focus", 
      "market", 
      "underlines", 
      "attractive conductors", 
      "such grain boundary obstacles", 
      "grain boundary obstacles", 
      "large superconducting anisotropy", 
      "superconducting anisotropy", 
      "multifilament form", 
      "proton resonance limit", 
      "grain boundary limits", 
      "Isotropic round-wire multifilament cuprate superconductor", 
      "round-wire multifilament cuprate superconductor", 
      "multifilament cuprate superconductor"
    ], 
    "name": "Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T", 
    "pagination": "375-381", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040651649"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat3887"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24608141"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat3887", 
      "https://app.dimensions.ai/details/publication/pub.1040651649"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_638.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nmat3887"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3887'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3887'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3887'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3887'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      22 PREDICATES      93 URIs      83 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat3887 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb0c3ffd20e5a4df48b92de8f2ea734ec
4 schema:citation sg:pub.10.1038/35104654
5 sg:pub.10.1038/nmat3333
6 schema:datePublished 2014-03-09
7 schema:datePublishedReg 2014-03-09
8 schema:description Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, Jc. To minimize such grain boundary obstacles, HTS conductors such as REBa2Cu3O7−x and (Bi, Pb)2Sr2Ca2Cu3O10−x are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi2Sr2CaCu2O8−x (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb3Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very high Jc of 2,500 A mm−2 at 20 T and 4.2 K. The large potential of the conductor has been demonstrated by building a small coil that generated almost 2.6 T in a 31 T background field. This demonstration that grain boundary limits to high Jc can be practically overcome underlines the value of a renewed focus on grain boundary properties in non-ideal geometries.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N5a5f8a19b69b4672ac38658f62943671
13 Nc640bf3950094438831b288a5c82d327
14 sg:journal.1031408
15 schema:keywords Bi
16 HTS conductors
17 Isotropic round-wire multifilament cuprate superconductor
18 Jc
19 NMR magnet
20 Nb3Sn technology
21 anisotropy
22 arbitrary geometry
23 aspect ratio
24 attractive conductors
25 attributes
26 background field
27 boundaries
28 boundary limits
29 boundary obstacles
30 boundary properties
31 coil
32 conductors
33 critical current density
34 cuprate superconductors
35 current density
36 demonstration
37 density
38 field
39 focus
40 form
41 generation
42 geometry
43 grain boundaries
44 grain boundary limits
45 grain boundary obstacles
46 grain boundary properties
47 high Jc
48 high aspect ratio
49 high-angle grain boundaries
50 high-field NMR magnet
51 high-temperature cuprate superconductors
52 large potential
53 large superconducting anisotropy
54 limit
55 macroscopic texture
56 magnetic field
57 magnets
58 market
59 multifilament cuprate superconductor
60 multifilament form
61 non-ideal geometry
62 obstacles
63 potential
64 presence
65 principal market
66 properties
67 proton resonance limit
68 ratio
69 resonance limit
70 round-wire multifilament cuprate superconductor
71 small coil
72 such grain boundary obstacles
73 superconducting anisotropy
74 superconductors
75 tape
76 technology
77 texture
78 underlines
79 values
80 schema:name Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T
81 schema:pagination 375-381
82 schema:productId N791f1528857b401096bf640d7a55d96e
83 Nd04b4caf68da41f58fc581524631e525
84 Nd3997cc17448422790a51d4735ed581a
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651649
86 https://doi.org/10.1038/nmat3887
87 schema:sdDatePublished 2022-01-01T18:33
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nc9fe3c1d70234aa6ae87c98c560ecaa7
90 schema:url https://doi.org/10.1038/nmat3887
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N0c965e943f704bbeb38d4e8115a48490 rdf:first sg:person.0632002631.91
95 rdf:rest rdf:nil
96 N11b51cd9d15242aea7e14de886519551 rdf:first sg:person.0751170420.11
97 rdf:rest N8b2277ebd00d40d1bdaa59171997d8ae
98 N17ff3be335aa46879274d3b94d647257 rdf:first sg:person.012324164051.30
99 rdf:rest Ndf5103aa441d4a799a3758b74894ead1
100 N3bb49722c9d3450bb66b95c37d5073a1 rdf:first sg:person.014376662537.83
101 rdf:rest N0c965e943f704bbeb38d4e8115a48490
102 N5a5f8a19b69b4672ac38658f62943671 schema:issueNumber 4
103 rdf:type schema:PublicationIssue
104 N661011e162f94520b176125ee13c6fdc rdf:first sg:person.01154110202.55
105 rdf:rest Nb38fbfa01b7043e9acb40a5c7b2a8b51
106 N791f1528857b401096bf640d7a55d96e schema:name dimensions_id
107 schema:value pub.1040651649
108 rdf:type schema:PropertyValue
109 N8b2277ebd00d40d1bdaa59171997d8ae rdf:first sg:person.014142652431.55
110 rdf:rest N9fa76185c66c472fac5756e8c3b8d292
111 N9fa76185c66c472fac5756e8c3b8d292 rdf:first sg:person.011523776553.52
112 rdf:rest N3bb49722c9d3450bb66b95c37d5073a1
113 Naf9d22f48721440396d9449be63f9864 rdf:first sg:person.01241160331.01
114 rdf:rest N17ff3be335aa46879274d3b94d647257
115 Nb0c3ffd20e5a4df48b92de8f2ea734ec rdf:first sg:person.013512370724.92
116 rdf:rest N661011e162f94520b176125ee13c6fdc
117 Nb38fbfa01b7043e9acb40a5c7b2a8b51 rdf:first sg:person.011674377565.68
118 rdf:rest Naf9d22f48721440396d9449be63f9864
119 Nc640bf3950094438831b288a5c82d327 schema:volumeNumber 13
120 rdf:type schema:PublicationVolume
121 Nc9fe3c1d70234aa6ae87c98c560ecaa7 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Nd04b4caf68da41f58fc581524631e525 schema:name pubmed_id
124 schema:value 24608141
125 rdf:type schema:PropertyValue
126 Nd3997cc17448422790a51d4735ed581a schema:name doi
127 schema:value 10.1038/nmat3887
128 rdf:type schema:PropertyValue
129 Ndf5103aa441d4a799a3758b74894ead1 rdf:first sg:person.0703055220.42
130 rdf:rest N11b51cd9d15242aea7e14de886519551
131 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
132 schema:name Engineering
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
135 schema:name Materials Engineering
136 rdf:type schema:DefinedTerm
137 sg:grant.3479346 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3887
138 rdf:type schema:MonetaryGrant
139 sg:journal.1031408 schema:issn 1476-1122
140 1476-4660
141 schema:name Nature Materials
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.011523776553.52 schema:affiliation grid-institutes:grid.481548.4
145 schema:familyName Craig
146 schema:givenName N. C.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011523776553.52
148 rdf:type schema:Person
149 sg:person.01154110202.55 schema:affiliation grid-institutes:grid.481548.4
150 schema:familyName Jiang
151 schema:givenName J.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110202.55
153 rdf:type schema:Person
154 sg:person.011674377565.68 schema:affiliation grid-institutes:grid.481548.4
155 schema:familyName Trociewitz
156 schema:givenName U. P.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011674377565.68
158 rdf:type schema:Person
159 sg:person.012324164051.30 schema:affiliation grid-institutes:grid.9132.9
160 schema:familyName Scheuerlein
161 schema:givenName C.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324164051.30
163 rdf:type schema:Person
164 sg:person.01241160331.01 schema:affiliation grid-institutes:grid.481548.4
165 schema:familyName Kametani
166 schema:givenName F.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241160331.01
168 rdf:type schema:Person
169 sg:person.013512370724.92 schema:affiliation grid-institutes:grid.481548.4
170 schema:familyName Larbalestier
171 schema:givenName D. C.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512370724.92
173 rdf:type schema:Person
174 sg:person.014142652431.55 schema:affiliation grid-institutes:grid.481548.4
175 schema:familyName Chen
176 schema:givenName P.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142652431.55
178 rdf:type schema:Person
179 sg:person.014376662537.83 schema:affiliation grid-institutes:grid.481548.4
180 schema:familyName Lee
181 schema:givenName P. J.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376662537.83
183 rdf:type schema:Person
184 sg:person.0632002631.91 schema:affiliation grid-institutes:grid.481548.4
185 schema:familyName Hellstrom
186 schema:givenName E. E.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632002631.91
188 rdf:type schema:Person
189 sg:person.0703055220.42 schema:affiliation grid-institutes:grid.481548.4
190 schema:familyName Dalban-Canassy
191 schema:givenName M.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703055220.42
193 rdf:type schema:Person
194 sg:person.0751170420.11 schema:affiliation grid-institutes:grid.481548.4
195 schema:familyName Matras
196 schema:givenName M.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751170420.11
198 rdf:type schema:Person
199 sg:pub.10.1038/35104654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000028211
200 https://doi.org/10.1038/35104654
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nmat3333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005557093
203 https://doi.org/10.1038/nmat3333
204 rdf:type schema:CreativeWork
205 grid-institutes:grid.481548.4 schema:alternateName Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
206 schema:name Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
207 rdf:type schema:Organization
208 grid-institutes:grid.9132.9 schema:alternateName European Organization for Nuclear Research, Geneva CH-1211, Switzerland
209 schema:name European Organization for Nuclear Research, Geneva CH-1211, Switzerland
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...