Current-driven dynamics of chiral ferromagnetic domain walls View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07

AUTHORS

Satoru Emori, Uwe Bauer, Sung-Min Ahn, Eduardo Martinez, Geoffrey S. D. Beach

ABSTRACT

In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Néel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices. More... »

PAGES

611

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat3675

DOI

http://dx.doi.org/10.1038/nmat3675

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025553648

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23770726


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emori", 
        "givenName": "Satoru", 
        "id": "sg:person.07504662241.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504662241.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "Uwe", 
        "id": "sg:person.01341371153.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341371153.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Sung-Min", 
        "id": "sg:person.01105760102.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105760102.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salamanca", 
          "id": "https://www.grid.ac/institutes/grid.11762.33", 
          "name": [
            "Dpto. F\u0131\u00b4sica Aplicada. Universidad de Salamanca, Plaza de los Caidos s/n E-38008, Salamanca, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Martinez", 
        "givenName": "Eduardo", 
        "id": "sg:person.01223031515.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223031515.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beach", 
        "givenName": "Geoffrey S. D.", 
        "id": "sg:person.013144132527.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144132527.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001812456", 
          "https://doi.org/10.1038/nmat3553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008401895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.096602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017455943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017462081", 
          "https://doi.org/10.1038/nphys2045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/100/57002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018672975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.020402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019965027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10452-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021819555", 
          "https://doi.org/10.1038/nature05802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879031", 
          "https://doi.org/10.1038/nature10309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022651800", 
          "https://doi.org/10.1038/nmat2961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025807989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025807989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4737899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028323803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4753947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028499708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029974002", 
          "https://doi.org/10.1038/nmat3522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032728699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3062855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033244750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3502596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037610730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/24/2/024206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038153269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3579155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057978324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.024407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.024407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.137202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.137202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.267201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.267201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.4.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.4.228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lmag.2012.2188621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061361292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a N\u00e9el configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/nmat3675", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3128764", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Current-driven dynamics of chiral ferromagnetic domain walls", 
    "pagination": "611", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79bd4887d2e217444237da181d15b0c223bf1446722b5c7f662074272c8f9761"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23770726"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat3675"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025553648"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat3675", 
      "https://app.dimensions.ai/details/publication/pub.1025553648"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000563.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat3675"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3675'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3675'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3675'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3675'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat3675 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne9a96995a30345c5982805941de77281
4 schema:citation sg:pub.10.1038/nature05802
5 sg:pub.10.1038/nature09124
6 sg:pub.10.1038/nature10309
7 sg:pub.10.1038/nmat2613
8 sg:pub.10.1038/nmat2961
9 sg:pub.10.1038/nmat3020
10 sg:pub.10.1038/nmat3522
11 sg:pub.10.1038/nmat3553
12 sg:pub.10.1038/nphys2045
13 https://doi.org/10.1063/1.3062855
14 https://doi.org/10.1063/1.3502596
15 https://doi.org/10.1063/1.3579155
16 https://doi.org/10.1063/1.4737899
17 https://doi.org/10.1063/1.4753947
18 https://doi.org/10.1088/0953-8984/24/2/024206
19 https://doi.org/10.1103/physrevb.78.140403
20 https://doi.org/10.1103/physrevb.81.024407
21 https://doi.org/10.1103/physrevb.85.180404
22 https://doi.org/10.1103/physrevb.87.020402
23 https://doi.org/10.1103/physrevlett.102.137202
24 https://doi.org/10.1103/physrevlett.108.117201
25 https://doi.org/10.1103/physrevlett.108.267201
26 https://doi.org/10.1103/physrevlett.109.096602
27 https://doi.org/10.1103/physrevlett.4.228
28 https://doi.org/10.1109/lmag.2012.2188621
29 https://doi.org/10.1126/science.1108813
30 https://doi.org/10.1126/science.1145799
31 https://doi.org/10.1126/science.1218197
32 https://doi.org/10.1209/0295-5075/100/57002
33 https://doi.org/10.1209/epl/i2004-10452-6
34 schema:datePublished 2013-07
35 schema:datePublishedReg 2013-07-01
36 schema:description In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Néel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.
37 schema:genre non_research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N1d9bd763bf8243eda49797369c7fee7c
41 Nbffdf5b587e84c82a15c261aad15d8bd
42 sg:journal.1031408
43 schema:name Current-driven dynamics of chiral ferromagnetic domain walls
44 schema:pagination 611
45 schema:productId N363fe03f1b984836a94ba2dc9b69ba33
46 Na4df7ef9574043e5beb1ac8394ae3862
47 Nd081744cb9534aa9bf9977274a816f91
48 Ned7106e160a1493892434212b8249153
49 Nf320defafd884da9a0a96a7d9f2b6edc
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553648
51 https://doi.org/10.1038/nmat3675
52 schema:sdDatePublished 2019-04-10T22:41
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N660c0f5388324a0685cdb717c6877aed
55 schema:url https://www.nature.com/articles/nmat3675
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1d9bd763bf8243eda49797369c7fee7c schema:issueNumber 7
60 rdf:type schema:PublicationIssue
61 N363fe03f1b984836a94ba2dc9b69ba33 schema:name pubmed_id
62 schema:value 23770726
63 rdf:type schema:PropertyValue
64 N516545948ea94f31b5ad6fe47296d758 rdf:first sg:person.01341371153.08
65 rdf:rest N826657f808a04f1aa3f1f0bac358eb9f
66 N5739a0a118b34233ad6567bd01abbcf7 rdf:first sg:person.013144132527.20
67 rdf:rest rdf:nil
68 N660c0f5388324a0685cdb717c6877aed schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N6f1bae91a7cd4f83ab4f733c8eff112d rdf:first sg:person.01223031515.56
71 rdf:rest N5739a0a118b34233ad6567bd01abbcf7
72 N826657f808a04f1aa3f1f0bac358eb9f rdf:first sg:person.01105760102.93
73 rdf:rest N6f1bae91a7cd4f83ab4f733c8eff112d
74 Na4df7ef9574043e5beb1ac8394ae3862 schema:name dimensions_id
75 schema:value pub.1025553648
76 rdf:type schema:PropertyValue
77 Nbffdf5b587e84c82a15c261aad15d8bd schema:volumeNumber 12
78 rdf:type schema:PublicationVolume
79 Nd081744cb9534aa9bf9977274a816f91 schema:name readcube_id
80 schema:value 79bd4887d2e217444237da181d15b0c223bf1446722b5c7f662074272c8f9761
81 rdf:type schema:PropertyValue
82 Ne9a96995a30345c5982805941de77281 rdf:first sg:person.07504662241.03
83 rdf:rest N516545948ea94f31b5ad6fe47296d758
84 Ned7106e160a1493892434212b8249153 schema:name nlm_unique_id
85 schema:value 101155473
86 rdf:type schema:PropertyValue
87 Nf320defafd884da9a0a96a7d9f2b6edc schema:name doi
88 schema:value 10.1038/nmat3675
89 rdf:type schema:PropertyValue
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:grant.3128764 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3675
97 rdf:type schema:MonetaryGrant
98 sg:journal.1031408 schema:issn 1476-1122
99 1476-4660
100 schema:name Nature Materials
101 rdf:type schema:Periodical
102 sg:person.01105760102.93 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
103 schema:familyName Ahn
104 schema:givenName Sung-Min
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105760102.93
106 rdf:type schema:Person
107 sg:person.01223031515.56 schema:affiliation https://www.grid.ac/institutes/grid.11762.33
108 schema:familyName Martinez
109 schema:givenName Eduardo
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223031515.56
111 rdf:type schema:Person
112 sg:person.013144132527.20 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
113 schema:familyName Beach
114 schema:givenName Geoffrey S. D.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144132527.20
116 rdf:type schema:Person
117 sg:person.01341371153.08 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
118 schema:familyName Bauer
119 schema:givenName Uwe
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341371153.08
121 rdf:type schema:Person
122 sg:person.07504662241.03 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
123 schema:familyName Emori
124 schema:givenName Satoru
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504662241.03
126 rdf:type schema:Person
127 sg:pub.10.1038/nature05802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021819555
128 https://doi.org/10.1038/nature05802
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
131 https://doi.org/10.1038/nature09124
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature10309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879031
134 https://doi.org/10.1038/nature10309
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nmat2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
137 https://doi.org/10.1038/nmat2613
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nmat2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022651800
140 https://doi.org/10.1038/nmat2961
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
143 https://doi.org/10.1038/nmat3020
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nmat3522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029974002
146 https://doi.org/10.1038/nmat3522
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nmat3553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001812456
149 https://doi.org/10.1038/nmat3553
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphys2045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462081
152 https://doi.org/10.1038/nphys2045
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.3062855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033244750
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.3502596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037610730
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.3579155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057978324
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.4737899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028323803
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1063/1.4753947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028499708
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/0953-8984/24/2/024206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038153269
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.78.140403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032728699
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.81.024407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631332
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.85.180404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044572400
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.87.020402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965027
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.102.137202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755121
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.108.117201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025807989
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.108.267201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760008
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.109.096602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017455943
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.4.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782169
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/lmag.2012.2188621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061361292
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1218197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008401895
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1209/0295-5075/100/57002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018672975
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1209/epl/i2004-10452-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678993
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
197 schema:name Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.11762.33 schema:alternateName University of Salamanca
200 schema:name Dpto. Fı´sica Aplicada. Universidad de Salamanca, Plaza de los Caidos s/n E-38008, Salamanca, Spain
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...