High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06

AUTHORS

Veronica Augustyn, Jérémy Come, Michael A. Lowe, Jong Woung Kim, Pierre-Louis Taberna, Sarah H. Tolbert, Héctor D. Abruña, Patrice Simon, Bruce Dunn

ABSTRACT

Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 μm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices. More... »

PAGES

518

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat3601

DOI

http://dx.doi.org/10.1038/nmat3601

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010365371

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23584143


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intercalating Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lithium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanostructures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Niobium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxides", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Augustyn", 
        "givenName": "Veronica", 
        "id": "sg:person.01233556662.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233556662.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Department of Materials Science, Universit\u00e9 Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Come", 
        "givenName": "J\u00e9r\u00e9my", 
        "id": "sg:person.012632455334.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632455334.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lowe", 
        "givenName": "Michael A.", 
        "id": "sg:person.016642215176.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642215176.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jong Woung", 
        "id": "sg:person.0624401162.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624401162.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Department of Materials Science, Universit\u00e9 Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taberna", 
        "givenName": "Pierre-Louis", 
        "id": "sg:person.01322602661.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322602661.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolbert", 
        "givenName": "Sarah H.", 
        "id": "sg:person.01371221001.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371221001.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abru\u00f1a", 
        "givenName": "H\u00e9ctor D.", 
        "id": "sg:person.01057060204.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057060204.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Department of Materials Science, Universit\u00e9 Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simon", 
        "givenName": "Patrice", 
        "id": "sg:person.0605717037.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605717037.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunn", 
        "givenName": "Bruce", 
        "id": "sg:person.01277040521.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277040521.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1149/1.2163788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001339603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2163788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001339603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(00)00725-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002203394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp970490q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006655949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp970490q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006655949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2085829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010645246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567740875003603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012508755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.06.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015717587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2050077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024737451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(90)85068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024947083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2005.09.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025751726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elecom.2011.03.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039264183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr9600363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042321968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr9600363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042321968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3619791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043584062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(94)e0158-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044279940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1392455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045413598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(77)80071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046543321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201100494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047067339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8057309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049456694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8057309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049456694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-7753(87)87005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052798128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9106385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055863260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9106385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055863260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp207616s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056085307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la980785a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056170038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la980785a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056170038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2\u00b7xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 \u03bcm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat3601", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4319229", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3783523", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3106513", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance", 
    "pagination": "518", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "31618d111a40d51d8b7c26546d3d07a8b95a340dd147b6eb1eeb551820110a12"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23584143"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat3601"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010365371"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat3601", 
      "https://app.dimensions.ai/details/publication/pub.1010365371"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat3601"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      58 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat3601 schema:about N38abf43d9f5b4fce9ed3ee64681f52dd
2 N71bf3b23d88547319713a50b2c4c9082
3 N781dc606093e48e498fc52fb5ad3c6bc
4 N95610a13bc8c441b8cff9933e54199ab
5 Nd51d33bce0ca4f8c910936323602b740
6 Ne4a86117f25e4e0aa04f23ddc47812dc
7 Nef8c141c64de4541b91120188eb04592
8 anzsrc-for:03
9 anzsrc-for:0306
10 schema:author Nbeff8e47c7f7417185780888cc4643b2
11 schema:citation https://doi.org/10.1002/aenm.201100494
12 https://doi.org/10.1016/0013-4686(90)85068-x
13 https://doi.org/10.1016/0013-4686(94)e0158-k
14 https://doi.org/10.1016/0378-7753(87)87005-2
15 https://doi.org/10.1016/j.elecom.2011.03.038
16 https://doi.org/10.1016/j.jallcom.2005.09.065
17 https://doi.org/10.1016/j.jpowsour.2010.06.060
18 https://doi.org/10.1016/s0022-0728(77)80071-5
19 https://doi.org/10.1016/s0167-2738(00)00725-6
20 https://doi.org/10.1021/cr9600363
21 https://doi.org/10.1021/ja8057309
22 https://doi.org/10.1021/ja9106385
23 https://doi.org/10.1021/jp026228l
24 https://doi.org/10.1021/jp207616s
25 https://doi.org/10.1021/jp970490q
26 https://doi.org/10.1021/la980785a
27 https://doi.org/10.1107/s0567740875003603
28 https://doi.org/10.1149/1.1392455
29 https://doi.org/10.1149/1.2050077
30 https://doi.org/10.1149/1.2085829
31 https://doi.org/10.1149/1.2163788
32 https://doi.org/10.1149/1.3619791
33 schema:datePublished 2013-06
34 schema:datePublishedReg 2013-06-01
35 schema:description Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 μm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N614531c6658341eb9bfb03c9e95e080b
40 Nc5d4d9c3159643cc90ee7f7976c275c8
41 sg:journal.1031408
42 schema:name High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
43 schema:pagination 518
44 schema:productId N1a43aa7276fd492687f9d583fe45f155
45 N8129b7a9134a45018fe512efda2dfa39
46 Nacaa216a5c4f434b9fc695e2f481a0f8
47 Nb9b3daf74cd14bac946bcb8609302a83
48 Nee70e973d1ad412388c0aded022c4c45
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365371
50 https://doi.org/10.1038/nmat3601
51 schema:sdDatePublished 2019-04-10T13:00
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N70af9c3123a4450289ef0a7b14df9ec2
54 schema:url https://www.nature.com/articles/nmat3601
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N047bb2ac7d41484b9f3793f92c34c25a rdf:first sg:person.012632455334.38
59 rdf:rest Ne1a663e4a72449eeae09a5af88e79215
60 N15ad33cffe784236858f98a991a54425 rdf:first sg:person.01277040521.14
61 rdf:rest rdf:nil
62 N1a43aa7276fd492687f9d583fe45f155 schema:name doi
63 schema:value 10.1038/nmat3601
64 rdf:type schema:PropertyValue
65 N34c39a45e3a3475193311e34f867e638 rdf:first sg:person.0624401162.24
66 rdf:rest N959280e6aff44ed4b87909cee5f8e7c2
67 N38abf43d9f5b4fce9ed3ee64681f52dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Nanostructures
69 rdf:type schema:DefinedTerm
70 N614531c6658341eb9bfb03c9e95e080b schema:volumeNumber 12
71 rdf:type schema:PublicationVolume
72 N70af9c3123a4450289ef0a7b14df9ec2 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N71bf3b23d88547319713a50b2c4c9082 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Electrochemistry
76 rdf:type schema:DefinedTerm
77 N781dc606093e48e498fc52fb5ad3c6bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Oxides
79 rdf:type schema:DefinedTerm
80 N8129b7a9134a45018fe512efda2dfa39 schema:name readcube_id
81 schema:value 31618d111a40d51d8b7c26546d3d07a8b95a340dd147b6eb1eeb551820110a12
82 rdf:type schema:PropertyValue
83 N8a54c95447354af584397503265497cf rdf:first sg:person.01057060204.02
84 rdf:rest N92e948dc739840288bc5e5e22eecfcf1
85 N92e948dc739840288bc5e5e22eecfcf1 rdf:first sg:person.0605717037.35
86 rdf:rest N15ad33cffe784236858f98a991a54425
87 N95610a13bc8c441b8cff9933e54199ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Electrodes
89 rdf:type schema:DefinedTerm
90 N959280e6aff44ed4b87909cee5f8e7c2 rdf:first sg:person.01322602661.96
91 rdf:rest Neeac66972440493cab059f6c01f95b2e
92 Nacaa216a5c4f434b9fc695e2f481a0f8 schema:name dimensions_id
93 schema:value pub.1010365371
94 rdf:type schema:PropertyValue
95 Nb9b3daf74cd14bac946bcb8609302a83 schema:name nlm_unique_id
96 schema:value 101155473
97 rdf:type schema:PropertyValue
98 Nbeff8e47c7f7417185780888cc4643b2 rdf:first sg:person.01233556662.48
99 rdf:rest N047bb2ac7d41484b9f3793f92c34c25a
100 Nc5d4d9c3159643cc90ee7f7976c275c8 schema:issueNumber 6
101 rdf:type schema:PublicationIssue
102 Nd51d33bce0ca4f8c910936323602b740 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Niobium
104 rdf:type schema:DefinedTerm
105 Ne1a663e4a72449eeae09a5af88e79215 rdf:first sg:person.016642215176.11
106 rdf:rest N34c39a45e3a3475193311e34f867e638
107 Ne4a86117f25e4e0aa04f23ddc47812dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Intercalating Agents
109 rdf:type schema:DefinedTerm
110 Nee70e973d1ad412388c0aded022c4c45 schema:name pubmed_id
111 schema:value 23584143
112 rdf:type schema:PropertyValue
113 Neeac66972440493cab059f6c01f95b2e rdf:first sg:person.01371221001.49
114 rdf:rest N8a54c95447354af584397503265497cf
115 Nef8c141c64de4541b91120188eb04592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Lithium
117 rdf:type schema:DefinedTerm
118 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
119 schema:name Chemical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Chemistry (incl. Structural)
123 rdf:type schema:DefinedTerm
124 sg:grant.3106513 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3601
125 rdf:type schema:MonetaryGrant
126 sg:grant.3783523 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3601
127 rdf:type schema:MonetaryGrant
128 sg:grant.4319229 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3601
129 rdf:type schema:MonetaryGrant
130 sg:journal.1031408 schema:issn 1476-1122
131 1476-4660
132 schema:name Nature Materials
133 rdf:type schema:Periodical
134 sg:person.01057060204.02 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
135 schema:familyName Abruña
136 schema:givenName Héctor D.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057060204.02
138 rdf:type schema:Person
139 sg:person.01233556662.48 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
140 schema:familyName Augustyn
141 schema:givenName Veronica
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233556662.48
143 rdf:type schema:Person
144 sg:person.012632455334.38 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
145 schema:familyName Come
146 schema:givenName Jérémy
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632455334.38
148 rdf:type schema:Person
149 sg:person.01277040521.14 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
150 schema:familyName Dunn
151 schema:givenName Bruce
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277040521.14
153 rdf:type schema:Person
154 sg:person.01322602661.96 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
155 schema:familyName Taberna
156 schema:givenName Pierre-Louis
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322602661.96
158 rdf:type schema:Person
159 sg:person.01371221001.49 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
160 schema:familyName Tolbert
161 schema:givenName Sarah H.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371221001.49
163 rdf:type schema:Person
164 sg:person.016642215176.11 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
165 schema:familyName Lowe
166 schema:givenName Michael A.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642215176.11
168 rdf:type schema:Person
169 sg:person.0605717037.35 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
170 schema:familyName Simon
171 schema:givenName Patrice
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605717037.35
173 rdf:type schema:Person
174 sg:person.0624401162.24 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
175 schema:familyName Kim
176 schema:givenName Jong Woung
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624401162.24
178 rdf:type schema:Person
179 https://doi.org/10.1002/aenm.201100494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047067339
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0013-4686(90)85068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024947083
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0013-4686(94)e0158-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1044279940
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0378-7753(87)87005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052798128
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.elecom.2011.03.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039264183
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jallcom.2005.09.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025751726
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jpowsour.2010.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015717587
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0022-0728(77)80071-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046543321
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0167-2738(00)00725-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002203394
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/cr9600363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042321968
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/ja8057309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049456694
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ja9106385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055863260
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/jp026228l schema:sameAs https://app.dimensions.ai/details/publication/pub.1031398722
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/jp207616s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056085307
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/jp970490q schema:sameAs https://app.dimensions.ai/details/publication/pub.1006655949
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/la980785a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056170038
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1107/s0567740875003603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012508755
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1149/1.1392455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045413598
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1149/1.2050077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024737451
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1149/1.2085829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010645246
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1149/1.2163788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001339603
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1149/1.3619791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043584062
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
224 schema:name Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
225 Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.494528.6 schema:alternateName Research Network on Electrochemical Energy Storage
228 schema:name Department of Materials Science, Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France
229 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, France
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
232 schema:name Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...