High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06

AUTHORS

Veronica Augustyn, Jérémy Come, Michael A. Lowe, Jong Woung Kim, Pierre-Louis Taberna, Sarah H. Tolbert, Héctor D. Abruña, Patrice Simon, Bruce Dunn

ABSTRACT

Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 μm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices. More... »

PAGES

518

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat3601

DOI

http://dx.doi.org/10.1038/nmat3601

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010365371

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23584143


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrodes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Intercalating Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lithium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanostructures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Niobium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxides", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Augustyn", 
        "givenName": "Veronica", 
        "id": "sg:person.01233556662.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233556662.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Department of Materials Science, Universit\u00e9 Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Come", 
        "givenName": "J\u00e9r\u00e9my", 
        "id": "sg:person.012632455334.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632455334.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lowe", 
        "givenName": "Michael A.", 
        "id": "sg:person.016642215176.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642215176.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jong Woung", 
        "id": "sg:person.0624401162.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624401162.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Department of Materials Science, Universit\u00e9 Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taberna", 
        "givenName": "Pierre-Louis", 
        "id": "sg:person.01322602661.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322602661.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolbert", 
        "givenName": "Sarah H.", 
        "id": "sg:person.01371221001.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371221001.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abru\u00f1a", 
        "givenName": "H\u00e9ctor D.", 
        "id": "sg:person.01057060204.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057060204.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Network on Electrochemical Energy Storage", 
          "id": "https://www.grid.ac/institutes/grid.494528.6", 
          "name": [
            "Department of Materials Science, Universit\u00e9 Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France", 
            "R\u00e9seau sur le Stockage Electrochimique de l\u2019Energie (RS2E), FR CNRS 3459, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simon", 
        "givenName": "Patrice", 
        "id": "sg:person.0605717037.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605717037.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California Los Angeles", 
          "id": "https://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunn", 
        "givenName": "Bruce", 
        "id": "sg:person.01277040521.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277040521.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1149/1.2163788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001339603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2163788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001339603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(00)00725-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002203394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp970490q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006655949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp970490q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006655949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2085829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010645246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567740875003603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012508755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.06.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015717587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2050077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024737451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(90)85068-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024947083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2005.09.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025751726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elecom.2011.03.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039264183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr9600363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042321968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr9600363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042321968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3619791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043584062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(94)e0158-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044279940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1392455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045413598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(77)80071-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046543321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201100494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047067339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8057309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049456694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8057309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049456694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-7753(87)87005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052798128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9106385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055863260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9106385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055863260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp207616s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056085307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la980785a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056170038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la980785a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056170038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2\u00b7xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 \u03bcm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat3601", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4319229", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3783523", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3106513", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance", 
    "pagination": "518", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "31618d111a40d51d8b7c26546d3d07a8b95a340dd147b6eb1eeb551820110a12"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23584143"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat3601"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010365371"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat3601", 
      "https://app.dimensions.ai/details/publication/pub.1010365371"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat3601"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3601'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      58 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat3601 schema:about N1f2bf441293c49e8851c63852bd29add
2 N45c24e4bc8c34f23b6e00687a37fc43a
3 N55902a82563b48168c6f5fad6f5ac9ff
4 N74e7380f43ec4781ad7391aa14f8ee17
5 Nb5c324f167d642ef866ff02a25c6600a
6 Nc478601a134a44e998c670fea240a98a
7 Nf7e16aa142bf425dab25e206090db174
8 anzsrc-for:03
9 anzsrc-for:0306
10 schema:author Nd93137cbbbdd4b6eb9276a614ad89ef3
11 schema:citation https://doi.org/10.1002/aenm.201100494
12 https://doi.org/10.1016/0013-4686(90)85068-x
13 https://doi.org/10.1016/0013-4686(94)e0158-k
14 https://doi.org/10.1016/0378-7753(87)87005-2
15 https://doi.org/10.1016/j.elecom.2011.03.038
16 https://doi.org/10.1016/j.jallcom.2005.09.065
17 https://doi.org/10.1016/j.jpowsour.2010.06.060
18 https://doi.org/10.1016/s0022-0728(77)80071-5
19 https://doi.org/10.1016/s0167-2738(00)00725-6
20 https://doi.org/10.1021/cr9600363
21 https://doi.org/10.1021/ja8057309
22 https://doi.org/10.1021/ja9106385
23 https://doi.org/10.1021/jp026228l
24 https://doi.org/10.1021/jp207616s
25 https://doi.org/10.1021/jp970490q
26 https://doi.org/10.1021/la980785a
27 https://doi.org/10.1107/s0567740875003603
28 https://doi.org/10.1149/1.1392455
29 https://doi.org/10.1149/1.2050077
30 https://doi.org/10.1149/1.2085829
31 https://doi.org/10.1149/1.2163788
32 https://doi.org/10.1149/1.3619791
33 schema:datePublished 2013-06
34 schema:datePublishedReg 2013-06-01
35 schema:description Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 μm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N8869654c60be490ca0790cb029a059a9
40 Nb0891ba1894244fb8121c05a0cacfee6
41 sg:journal.1031408
42 schema:name High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
43 schema:pagination 518
44 schema:productId N593556d2f31c45c28a962e8daaa74b6b
45 Nac2b0fa136a54063bae2233c6c3d95d9
46 Nb06ef6c233ba4b2caec13dc8ce396173
47 Nb5e87df0556e4fd693bd456c6dbdb6da
48 Nd509541ff64b4238940cad6e6f0e1240
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365371
50 https://doi.org/10.1038/nmat3601
51 schema:sdDatePublished 2019-04-10T13:00
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nb571a51868e14737a4b5666b96c7eb5d
54 schema:url https://www.nature.com/articles/nmat3601
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0dd2d2c43b9548808bc43df8978454d2 rdf:first sg:person.0605717037.35
59 rdf:rest Nad2b45cc4d234611b15f759f2a2f7f1a
60 N1f2bf441293c49e8851c63852bd29add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Electrodes
62 rdf:type schema:DefinedTerm
63 N25b6e3c3aadb496aaef9de58b222046a rdf:first sg:person.0624401162.24
64 rdf:rest N5aee05797ffb49e683973452bab6b5b4
65 N45c24e4bc8c34f23b6e00687a37fc43a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Intercalating Agents
67 rdf:type schema:DefinedTerm
68 N55902a82563b48168c6f5fad6f5ac9ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Electrochemistry
70 rdf:type schema:DefinedTerm
71 N593556d2f31c45c28a962e8daaa74b6b schema:name nlm_unique_id
72 schema:value 101155473
73 rdf:type schema:PropertyValue
74 N5aee05797ffb49e683973452bab6b5b4 rdf:first sg:person.01322602661.96
75 rdf:rest Nacd398bcd8ac45f58c37f838ec55b824
76 N74e7380f43ec4781ad7391aa14f8ee17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Lithium
78 rdf:type schema:DefinedTerm
79 N75e35a3fbe3b431ab396d6bf2cd6afc8 rdf:first sg:person.01057060204.02
80 rdf:rest N0dd2d2c43b9548808bc43df8978454d2
81 N8869654c60be490ca0790cb029a059a9 schema:volumeNumber 12
82 rdf:type schema:PublicationVolume
83 N95b0cfd5285a441aae6870bf391fa235 rdf:first sg:person.016642215176.11
84 rdf:rest N25b6e3c3aadb496aaef9de58b222046a
85 Nac2b0fa136a54063bae2233c6c3d95d9 schema:name readcube_id
86 schema:value 31618d111a40d51d8b7c26546d3d07a8b95a340dd147b6eb1eeb551820110a12
87 rdf:type schema:PropertyValue
88 Nacd398bcd8ac45f58c37f838ec55b824 rdf:first sg:person.01371221001.49
89 rdf:rest N75e35a3fbe3b431ab396d6bf2cd6afc8
90 Nad2b45cc4d234611b15f759f2a2f7f1a rdf:first sg:person.01277040521.14
91 rdf:rest rdf:nil
92 Nb06ef6c233ba4b2caec13dc8ce396173 schema:name doi
93 schema:value 10.1038/nmat3601
94 rdf:type schema:PropertyValue
95 Nb0891ba1894244fb8121c05a0cacfee6 schema:issueNumber 6
96 rdf:type schema:PublicationIssue
97 Nb571a51868e14737a4b5666b96c7eb5d schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nb5c324f167d642ef866ff02a25c6600a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Niobium
101 rdf:type schema:DefinedTerm
102 Nb5e87df0556e4fd693bd456c6dbdb6da schema:name dimensions_id
103 schema:value pub.1010365371
104 rdf:type schema:PropertyValue
105 Nc478601a134a44e998c670fea240a98a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Nanostructures
107 rdf:type schema:DefinedTerm
108 Nd509541ff64b4238940cad6e6f0e1240 schema:name pubmed_id
109 schema:value 23584143
110 rdf:type schema:PropertyValue
111 Nd93137cbbbdd4b6eb9276a614ad89ef3 rdf:first sg:person.01233556662.48
112 rdf:rest Nf81f334b1c1d45c3a51d8b8996903718
113 Nf7e16aa142bf425dab25e206090db174 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Oxides
115 rdf:type schema:DefinedTerm
116 Nf81f334b1c1d45c3a51d8b8996903718 rdf:first sg:person.012632455334.38
117 rdf:rest N95b0cfd5285a441aae6870bf391fa235
118 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
119 schema:name Chemical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Chemistry (incl. Structural)
123 rdf:type schema:DefinedTerm
124 sg:grant.3106513 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3601
125 rdf:type schema:MonetaryGrant
126 sg:grant.3783523 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3601
127 rdf:type schema:MonetaryGrant
128 sg:grant.4319229 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3601
129 rdf:type schema:MonetaryGrant
130 sg:journal.1031408 schema:issn 1476-1122
131 1476-4660
132 schema:name Nature Materials
133 rdf:type schema:Periodical
134 sg:person.01057060204.02 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
135 schema:familyName Abruña
136 schema:givenName Héctor D.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057060204.02
138 rdf:type schema:Person
139 sg:person.01233556662.48 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
140 schema:familyName Augustyn
141 schema:givenName Veronica
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233556662.48
143 rdf:type schema:Person
144 sg:person.012632455334.38 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
145 schema:familyName Come
146 schema:givenName Jérémy
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012632455334.38
148 rdf:type schema:Person
149 sg:person.01277040521.14 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
150 schema:familyName Dunn
151 schema:givenName Bruce
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277040521.14
153 rdf:type schema:Person
154 sg:person.01322602661.96 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
155 schema:familyName Taberna
156 schema:givenName Pierre-Louis
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322602661.96
158 rdf:type schema:Person
159 sg:person.01371221001.49 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
160 schema:familyName Tolbert
161 schema:givenName Sarah H.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371221001.49
163 rdf:type schema:Person
164 sg:person.016642215176.11 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
165 schema:familyName Lowe
166 schema:givenName Michael A.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642215176.11
168 rdf:type schema:Person
169 sg:person.0605717037.35 schema:affiliation https://www.grid.ac/institutes/grid.494528.6
170 schema:familyName Simon
171 schema:givenName Patrice
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605717037.35
173 rdf:type schema:Person
174 sg:person.0624401162.24 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
175 schema:familyName Kim
176 schema:givenName Jong Woung
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624401162.24
178 rdf:type schema:Person
179 https://doi.org/10.1002/aenm.201100494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047067339
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0013-4686(90)85068-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024947083
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0013-4686(94)e0158-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1044279940
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0378-7753(87)87005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052798128
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.elecom.2011.03.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039264183
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jallcom.2005.09.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025751726
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jpowsour.2010.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015717587
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0022-0728(77)80071-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046543321
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0167-2738(00)00725-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002203394
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/cr9600363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042321968
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/ja8057309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049456694
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ja9106385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055863260
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/jp026228l schema:sameAs https://app.dimensions.ai/details/publication/pub.1031398722
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/jp207616s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056085307
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/jp970490q schema:sameAs https://app.dimensions.ai/details/publication/pub.1006655949
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/la980785a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056170038
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1107/s0567740875003603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012508755
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1149/1.1392455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045413598
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1149/1.2050077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024737451
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1149/1.2085829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010645246
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1149/1.2163788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001339603
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1149/1.3619791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043584062
222 rdf:type schema:CreativeWork
223 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
224 schema:name Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
225 Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.494528.6 schema:alternateName Research Network on Electrochemical Energy Storage
228 schema:name Department of Materials Science, Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France
229 Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, France
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
232 schema:name Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...