Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03

AUTHORS

Junyeon Kim, Jaivardhan Sinha, Masamitsu Hayashi, Michihiko Yamanouchi, Shunsuke Fukami, Tetsuhiro Suzuki, Seiji Mitani, Hideo Ohno

ABSTRACT

Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically. More... »

PAGES

240

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat3522

DOI

http://dx.doi.org/10.1038/nmat3522

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029974002

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23263641


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Junyeon", 
        "id": "sg:person.0742671066.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742671066.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinha", 
        "givenName": "Jaivardhan", 
        "id": "sg:person.0625546317.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625546317.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Masamitsu", 
        "id": "sg:person.01265526463.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265526463.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8577, Japan", 
            "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamanouchi", 
        "givenName": "Michihiko", 
        "id": "sg:person.0656350763.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656350763.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8577, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukami", 
        "givenName": "Shunsuke", 
        "id": "sg:person.01206276701.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206276701.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Renesas Electronics (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.471241.5", 
          "name": [
            "Renesas Electronics Corporation, Sagamihara 252-5298, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Tetsuhiro", 
        "id": "sg:person.07567460641.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567460641.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Tsukuba 305-0047, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitani", 
        "givenName": "Seiji", 
        "id": "sg:person.012210551771.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210551771.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8577, Japan", 
            "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan", 
            "WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohno", 
        "givenName": "Hideo", 
        "id": "sg:person.012111370661.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111370661.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.77.214429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003764815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.214429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003764815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008401895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014073269", 
          "https://doi.org/10.1038/nmat3311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018761774", 
          "https://doi.org/10.1038/nphys1427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018761774", 
          "https://doi.org/10.1038/nphys1427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020087497", 
          "https://doi.org/10.1038/nmat3020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(90)90963-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021537964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(90)90963-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021537964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879031", 
          "https://doi.org/10.1038/nature10309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.036601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023427898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.036601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023427898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.174405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.174405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025807989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025807989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028007692", 
          "https://doi.org/10.1038/nmat2804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028007692", 
          "https://doi.org/10.1038/nmat2804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.236601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028342350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.236601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028342350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.104430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028373388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.104430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028373388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031258398", 
          "https://doi.org/10.1038/nphys784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4733674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032233162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.014416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033000825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.014416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033000825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00291-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036720101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3502596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037610730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041636891", 
          "https://doi.org/10.1038/nphys783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.180404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044572400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.144408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047803024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.144408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047803024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.064420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051475790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.064420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051475790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052164967", 
          "https://doi.org/10.1038/nmat3279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053023589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053023589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2749488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057863346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3536482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057970027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3558917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057974215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3579155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057978324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4711016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058049735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/17/33/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058961842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.100401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.100401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.184430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.184430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.246602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.246602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.226802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.226802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.077203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.077203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2008.2003036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061680828"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat3522", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO", 
    "pagination": "240", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ecaedb25e6eca0b9a2b1759b47c71481c0388846aa8a7b93494606e518157e5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23263641"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat3522"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029974002"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat3522", 
      "https://app.dimensions.ai/details/publication/pub.1029974002"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat3522"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3522'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3522'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3522'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3522'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat3522 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd091f71e859b45b48b676722778b8a36
4 schema:citation sg:pub.10.1038/nature10309
5 sg:pub.10.1038/nmat2613
6 sg:pub.10.1038/nmat2804
7 sg:pub.10.1038/nmat3020
8 sg:pub.10.1038/nmat3279
9 sg:pub.10.1038/nmat3311
10 sg:pub.10.1038/nphys1427
11 sg:pub.10.1038/nphys783
12 sg:pub.10.1038/nphys784
13 https://doi.org/10.1016/0038-1098(90)90963-c
14 https://doi.org/10.1016/s0304-8853(02)00291-3
15 https://doi.org/10.1063/1.2749488
16 https://doi.org/10.1063/1.3502596
17 https://doi.org/10.1063/1.3536482
18 https://doi.org/10.1063/1.3558917
19 https://doi.org/10.1063/1.3579155
20 https://doi.org/10.1063/1.4711016
21 https://doi.org/10.1063/1.4733674
22 https://doi.org/10.1088/0022-3719/17/33/015
23 https://doi.org/10.1103/physrevb.66.014407
24 https://doi.org/10.1103/physrevb.67.104430
25 https://doi.org/10.1103/physrevb.71.064420
26 https://doi.org/10.1103/physrevb.71.100401
27 https://doi.org/10.1103/physrevb.74.144408
28 https://doi.org/10.1103/physrevb.77.184430
29 https://doi.org/10.1103/physrevb.77.214429
30 https://doi.org/10.1103/physrevb.78.212405
31 https://doi.org/10.1103/physrevb.83.174405
32 https://doi.org/10.1103/physrevb.85.180404
33 https://doi.org/10.1103/physrevb.86.014416
34 https://doi.org/10.1103/physrevlett.100.246602
35 https://doi.org/10.1103/physrevlett.106.036601
36 https://doi.org/10.1103/physrevlett.108.117201
37 https://doi.org/10.1103/physrevlett.88.236601
38 https://doi.org/10.1103/physrevlett.89.226802
39 https://doi.org/10.1103/physrevlett.98.077203
40 https://doi.org/10.1109/tmag.2008.2003036
41 https://doi.org/10.1126/science.1218197
42 schema:datePublished 2013-03
43 schema:datePublishedReg 2013-03-01
44 schema:description Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf Ne38afbcd006b4e80a57cddcb8e0a5369
49 Nf81b9e38974a4ffba69c82caa49b0b17
50 sg:journal.1031408
51 schema:name Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO
52 schema:pagination 240
53 schema:productId N242bc148c94345df8307ca9d91075206
54 N7be6e057564a4dc494eeee5fa8a327b3
55 N93c5423314304ad7b583fe4119394904
56 Ne626c385fe194839aa4d1134f906120a
57 Ne746a5c492444b42a8811fa6c648829b
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029974002
59 https://doi.org/10.1038/nmat3522
60 schema:sdDatePublished 2019-04-10T15:40
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nebfecd2394be4c50807e563b6f69e549
63 schema:url https://www.nature.com/articles/nmat3522
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N242bc148c94345df8307ca9d91075206 schema:name pubmed_id
68 schema:value 23263641
69 rdf:type schema:PropertyValue
70 N39eabcb63460442a8c4d7ab9dcab76af rdf:first sg:person.0656350763.43
71 rdf:rest N6816b1a22c4b4b67908570336a08f8a4
72 N6816b1a22c4b4b67908570336a08f8a4 rdf:first sg:person.01206276701.11
73 rdf:rest Necaf5de0721f4549b8157d16d3098c84
74 N7be6e057564a4dc494eeee5fa8a327b3 schema:name readcube_id
75 schema:value 8ecaedb25e6eca0b9a2b1759b47c71481c0388846aa8a7b93494606e518157e5
76 rdf:type schema:PropertyValue
77 N7bf61c7f85bf4035bb47816c23aaaf8a rdf:first sg:person.012111370661.83
78 rdf:rest rdf:nil
79 N93c5423314304ad7b583fe4119394904 schema:name dimensions_id
80 schema:value pub.1029974002
81 rdf:type schema:PropertyValue
82 N98e1b28e73444fa38251199775bb7144 rdf:first sg:person.0625546317.49
83 rdf:rest Nc33cee9ef9d34981afcdab5c5a7f53b7
84 Nc25c8288f90f47f1b66efdc0d2f95706 rdf:first sg:person.012210551771.31
85 rdf:rest N7bf61c7f85bf4035bb47816c23aaaf8a
86 Nc33cee9ef9d34981afcdab5c5a7f53b7 rdf:first sg:person.01265526463.71
87 rdf:rest N39eabcb63460442a8c4d7ab9dcab76af
88 Nd091f71e859b45b48b676722778b8a36 rdf:first sg:person.0742671066.68
89 rdf:rest N98e1b28e73444fa38251199775bb7144
90 Ne38afbcd006b4e80a57cddcb8e0a5369 schema:volumeNumber 12
91 rdf:type schema:PublicationVolume
92 Ne626c385fe194839aa4d1134f906120a schema:name doi
93 schema:value 10.1038/nmat3522
94 rdf:type schema:PropertyValue
95 Ne746a5c492444b42a8811fa6c648829b schema:name nlm_unique_id
96 schema:value 101155473
97 rdf:type schema:PropertyValue
98 Nebfecd2394be4c50807e563b6f69e549 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Necaf5de0721f4549b8157d16d3098c84 rdf:first sg:person.07567460641.05
101 rdf:rest Nc25c8288f90f47f1b66efdc0d2f95706
102 Nf81b9e38974a4ffba69c82caa49b0b17 schema:issueNumber 3
103 rdf:type schema:PublicationIssue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1031408 schema:issn 1476-1122
111 1476-4660
112 schema:name Nature Materials
113 rdf:type schema:Periodical
114 sg:person.01206276701.11 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
115 schema:familyName Fukami
116 schema:givenName Shunsuke
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206276701.11
118 rdf:type schema:Person
119 sg:person.012111370661.83 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
120 schema:familyName Ohno
121 schema:givenName Hideo
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111370661.83
123 rdf:type schema:Person
124 sg:person.012210551771.31 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
125 schema:familyName Mitani
126 schema:givenName Seiji
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012210551771.31
128 rdf:type schema:Person
129 sg:person.01265526463.71 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
130 schema:familyName Hayashi
131 schema:givenName Masamitsu
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265526463.71
133 rdf:type schema:Person
134 sg:person.0625546317.49 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
135 schema:familyName Sinha
136 schema:givenName Jaivardhan
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625546317.49
138 rdf:type schema:Person
139 sg:person.0656350763.43 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
140 schema:familyName Yamanouchi
141 schema:givenName Michihiko
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656350763.43
143 rdf:type schema:Person
144 sg:person.0742671066.68 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
145 schema:familyName Kim
146 schema:givenName Junyeon
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742671066.68
148 rdf:type schema:Person
149 sg:person.07567460641.05 schema:affiliation https://www.grid.ac/institutes/grid.471241.5
150 schema:familyName Suzuki
151 schema:givenName Tetsuhiro
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567460641.05
153 rdf:type schema:Person
154 sg:pub.10.1038/nature10309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879031
155 https://doi.org/10.1038/nature10309
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nmat2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
158 https://doi.org/10.1038/nmat2613
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmat2804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028007692
161 https://doi.org/10.1038/nmat2804
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmat3020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020087497
164 https://doi.org/10.1038/nmat3020
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nmat3279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052164967
167 https://doi.org/10.1038/nmat3279
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nmat3311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014073269
170 https://doi.org/10.1038/nmat3311
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys1427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018761774
173 https://doi.org/10.1038/nphys1427
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nphys783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041636891
176 https://doi.org/10.1038/nphys783
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nphys784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031258398
179 https://doi.org/10.1038/nphys784
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0038-1098(90)90963-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1021537964
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0304-8853(02)00291-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036720101
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.2749488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057863346
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.3502596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037610730
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.3536482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057970027
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.3558917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057974215
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.3579155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057978324
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.4711016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058049735
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.4733674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233162
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1088/0022-3719/17/33/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058961842
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.66.014407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053023589
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.67.104430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028373388
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.71.064420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051475790
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.71.100401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060612941
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.74.144408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047803024
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.77.184430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624880
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.77.214429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003764815
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.78.212405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626740
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.83.174405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023875953
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.85.180404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044572400
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.86.014416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033000825
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.100.246602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753630
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.106.036601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023427898
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.108.117201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025807989
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.88.236601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028342350
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.89.226802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825659
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.98.077203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833596
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/tmag.2008.2003036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061680828
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/science.1218197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008401895
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
240 schema:name National Institute for Materials Science, Tsukuba 305-0047, Japan
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.471241.5 schema:alternateName Renesas Electronics (Japan)
243 schema:name Renesas Electronics Corporation, Sagamihara 252-5298, Japan
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
246 schema:name Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8577, Japan
247 Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
248 WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...