Tightly bound trions in monolayer MoS2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03

AUTHORS

Kin Fai Mak, Keliang He, Changgu Lee, Gwan Hyoung Lee, James Hone, Tony F. Heinz, Jie Shan

ABSTRACT

Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties. In contrast to graphene, monolayer MoS(2) is a non-centrosymmetric material with a direct energy gap. Strong photoluminescence, a current on/off ratio exceeding 10(8) in field-effect transistors, and efficient valley and spin control by optical helicity have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS(2) field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals. More... »

PAGES

207

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat3505

DOI

http://dx.doi.org/10.1038/nmat3505

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009145791

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23202371


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, New York 10027, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mak", 
        "givenName": "Kin Fai", 
        "id": "sg:person.01005504116.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005504116.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Keliang", 
        "id": "sg:person.0641223730.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641223730.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Changgu", 
        "id": "sg:person.01217153226.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217153226.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Mechanical Engineering, Columbia University, New York 10027, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Gwan Hyoung", 
        "id": "sg:person.01123030140.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123030140.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Mechanical Engineering, Columbia University, New York 10027, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hone", 
        "givenName": "James", 
        "id": "sg:person.01302747466.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302747466.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, New York 10027, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heinz", 
        "givenName": "Tony F.", 
        "id": "sg:person.01257703457.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257703457.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shan", 
        "givenName": "Jie", 
        "id": "sg:person.01037737316.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037737316.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.1979470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000473336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3636402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003552497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0749-6036(89)90382-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010166743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0749-6036(89)90382-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010166743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026390398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026390398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952436", 
          "https://doi.org/10.1038/nnano.2012.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1003937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030794634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/35/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039137738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1965.0071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043418918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548334", 
          "https://doi.org/10.1038/ncomms1882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp075424v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056073638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp075424v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056073638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2407388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057855368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.46.1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060447956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.46.1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060447956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.7551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060542905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.35.7551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060542905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.3821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.3821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.7804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.7804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.8.3719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.8.3719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.62.929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.62.929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839209"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties. In contrast to graphene, monolayer MoS(2) is a non-centrosymmetric material with a direct energy gap. Strong photoluminescence, a current on/off ratio exceeding 10(8) in field-effect transistors, and efficient valley and spin control by optical helicity have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS(2) field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat3505", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4319229", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3100440", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3127826", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4322279", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3125146", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Tightly bound trions in monolayer MoS2", 
    "pagination": "207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b927dbe53caebe78d7eb727d49e99435c4223d560b1d228a4e3918320311580"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23202371"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat3505"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009145791"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat3505", 
      "https://app.dimensions.ai/details/publication/pub.1009145791"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat3505"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3505'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3505'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3505'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3505'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat3505 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3487d622679942fc8cc77a85e8452e4a
4 schema:citation sg:pub.10.1038/ncomms1882
5 sg:pub.10.1038/nnano.2010.279
6 sg:pub.10.1038/nnano.2012.95
7 sg:pub.10.1038/nnano.2012.96
8 https://doi.org/10.1016/0749-6036(89)90382-0
9 https://doi.org/10.1021/jp075424v
10 https://doi.org/10.1021/nl903868w
11 https://doi.org/10.1021/nn1003937
12 https://doi.org/10.1063/1.1979470
13 https://doi.org/10.1063/1.2407388
14 https://doi.org/10.1063/1.3636402
15 https://doi.org/10.1088/0953-8984/16/35/002
16 https://doi.org/10.1098/rspa.1965.0071
17 https://doi.org/10.1103/physrev.46.1002
18 https://doi.org/10.1103/physrevb.35.7551
19 https://doi.org/10.1103/physrevb.44.3821
20 https://doi.org/10.1103/physrevb.55.7804
21 https://doi.org/10.1103/physrevb.79.115409
22 https://doi.org/10.1103/physrevb.8.3719
23 https://doi.org/10.1103/physrevb.85.205302
24 https://doi.org/10.1103/physrevb.86.115409
25 https://doi.org/10.1103/physrevlett.105.136805
26 https://doi.org/10.1103/physrevlett.108.196802
27 https://doi.org/10.1103/physrevlett.71.1752
28 https://doi.org/10.1103/physrevlett.74.976
29 https://doi.org/10.1103/physrevlett.84.187
30 https://doi.org/10.1103/revmodphys.62.929
31 https://doi.org/10.1103/revmodphys.82.1743
32 https://doi.org/10.1103/revmodphys.83.837
33 schema:datePublished 2013-03
34 schema:datePublishedReg 2013-03-01
35 schema:description Two-dimensional (2D) atomic crystals, such as graphene and transition-metal dichalcogenides, have emerged as a new class of materials with remarkable physical properties. In contrast to graphene, monolayer MoS(2) is a non-centrosymmetric material with a direct energy gap. Strong photoluminescence, a current on/off ratio exceeding 10(8) in field-effect transistors, and efficient valley and spin control by optical helicity have recently been demonstrated in this material. Here we report the spectroscopic identification in a monolayer MoS(2) field-effect transistor of tightly bound negative trions, a quasiparticle composed of two electrons and a hole. These quasiparticles, which can be optically created with valley and spin polarized holes, have no analogue in conventional semiconductors. They also possess a large binding energy (~ 20 meV), rendering them significant even at room temperature. Our results open up possibilities both for fundamental studies of many-body interactions and for optoelectronic and valleytronic applications in 2D atomic crystals.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf Nc2b1ccef06e744d893b01841498e701e
40 Nd0777906182c42f78b64875368929a63
41 sg:journal.1031408
42 schema:name Tightly bound trions in monolayer MoS2
43 schema:pagination 207
44 schema:productId N071d883dedc24d6f92c3cbcf78d13f27
45 N666000f295da4a6dbb50193a622e9431
46 N6831f255cdc548ffb67cb390fabbd3a6
47 Ndd13f9049e9d48a0a166dd68d6864480
48 Ndebe0eacbb87429fa835cf336eb8777b
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
50 https://doi.org/10.1038/nmat3505
51 schema:sdDatePublished 2019-04-10T23:13
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N5240cd08d88946049e5bcfb4316c904b
54 schema:url https://www.nature.com/articles/nmat3505
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N071d883dedc24d6f92c3cbcf78d13f27 schema:name dimensions_id
59 schema:value pub.1009145791
60 rdf:type schema:PropertyValue
61 N3487d622679942fc8cc77a85e8452e4a rdf:first sg:person.01005504116.00
62 rdf:rest Ncc528cf3f53c44b8849cf4b049fc8551
63 N3f9f72348e5348dfb559d4c626310770 rdf:first sg:person.01257703457.74
64 rdf:rest Nbcaab2dc70674926828a7c9d08400ffd
65 N438af89051f04237a175aacf4d3c9d1c rdf:first sg:person.01123030140.04
66 rdf:rest Ne68a6def54aa491db98952f82418b061
67 N5240cd08d88946049e5bcfb4316c904b schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N666000f295da4a6dbb50193a622e9431 schema:name nlm_unique_id
70 schema:value 101155473
71 rdf:type schema:PropertyValue
72 N6831f255cdc548ffb67cb390fabbd3a6 schema:name readcube_id
73 schema:value 2b927dbe53caebe78d7eb727d49e99435c4223d560b1d228a4e3918320311580
74 rdf:type schema:PropertyValue
75 Nbcaab2dc70674926828a7c9d08400ffd rdf:first sg:person.01037737316.13
76 rdf:rest rdf:nil
77 Nc2b1ccef06e744d893b01841498e701e schema:volumeNumber 12
78 rdf:type schema:PublicationVolume
79 Ncc528cf3f53c44b8849cf4b049fc8551 rdf:first sg:person.0641223730.49
80 rdf:rest Nfc62c9f1ce7e4ed4bb6e03c2d1e3aee3
81 Nd0777906182c42f78b64875368929a63 schema:issueNumber 3
82 rdf:type schema:PublicationIssue
83 Ndd13f9049e9d48a0a166dd68d6864480 schema:name doi
84 schema:value 10.1038/nmat3505
85 rdf:type schema:PropertyValue
86 Ndebe0eacbb87429fa835cf336eb8777b schema:name pubmed_id
87 schema:value 23202371
88 rdf:type schema:PropertyValue
89 Ne68a6def54aa491db98952f82418b061 rdf:first sg:person.01302747466.26
90 rdf:rest N3f9f72348e5348dfb559d4c626310770
91 Nfc62c9f1ce7e4ed4bb6e03c2d1e3aee3 rdf:first sg:person.01217153226.17
92 rdf:rest N438af89051f04237a175aacf4d3c9d1c
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
97 schema:name Materials Engineering
98 rdf:type schema:DefinedTerm
99 sg:grant.3100440 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3505
100 rdf:type schema:MonetaryGrant
101 sg:grant.3125146 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3505
102 rdf:type schema:MonetaryGrant
103 sg:grant.3127826 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3505
104 rdf:type schema:MonetaryGrant
105 sg:grant.4319229 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3505
106 rdf:type schema:MonetaryGrant
107 sg:grant.4322279 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3505
108 rdf:type schema:MonetaryGrant
109 sg:journal.1031408 schema:issn 1476-1122
110 1476-4660
111 schema:name Nature Materials
112 rdf:type schema:Periodical
113 sg:person.01005504116.00 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
114 schema:familyName Mak
115 schema:givenName Kin Fai
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005504116.00
117 rdf:type schema:Person
118 sg:person.01037737316.13 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
119 schema:familyName Shan
120 schema:givenName Jie
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037737316.13
122 rdf:type schema:Person
123 sg:person.01123030140.04 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
124 schema:familyName Lee
125 schema:givenName Gwan Hyoung
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123030140.04
127 rdf:type schema:Person
128 sg:person.01217153226.17 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
129 schema:familyName Lee
130 schema:givenName Changgu
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217153226.17
132 rdf:type schema:Person
133 sg:person.01257703457.74 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
134 schema:familyName Heinz
135 schema:givenName Tony F.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257703457.74
137 rdf:type schema:Person
138 sg:person.01302747466.26 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
139 schema:familyName Hone
140 schema:givenName James
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302747466.26
142 rdf:type schema:Person
143 sg:person.0641223730.49 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
144 schema:familyName He
145 schema:givenName Keliang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641223730.49
147 rdf:type schema:Person
148 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
149 https://doi.org/10.1038/ncomms1882
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
152 https://doi.org/10.1038/nnano.2010.279
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
155 https://doi.org/10.1038/nnano.2012.95
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
158 https://doi.org/10.1038/nnano.2012.96
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0749-6036(89)90382-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010166743
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/jp075424v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056073638
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/nn1003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794634
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.1979470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000473336
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.2407388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057855368
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.3636402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003552497
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0953-8984/16/35/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039137738
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1098/rspa.1965.0071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043418918
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrev.46.1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060447956
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.35.7551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060542905
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.44.3821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559406
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.55.7804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584731
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.79.115409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627763
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.8.3719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060629134
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.85.205302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578033
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.86.115409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639964
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.108.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264408
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.71.1752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807547
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.74.976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811460
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.84.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820811
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/revmodphys.62.929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839209
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/revmodphys.82.1743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928703
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/revmodphys.83.837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026390398
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
211 schema:name Department of Mechanical Engineering, Columbia University, New York 10027, USA
212 Departments of Physics and Electrical Engineering, Columbia University, 538 West 120th Street, New York 10027, USA
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
215 schema:name SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.67105.35 schema:alternateName Case Western Reserve University
218 schema:name Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...