Infrared metamaterial phase holograms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

Stéphane Larouche, Yu-Ju Tsai, Talmage Tyler, Nan M. Jokerst, David R. Smith

ABSTRACT

As a result of advances in nanotechnology and the burgeoning capabilities for fabricating materials with controlled nanoscale geometries, the traditional notion of what constitutes an optical device continues to evolve. The fusion of maturing low-cost lithographic techniques with newer optical design strategies has enabled the introduction of artificially structured metamaterials in place of conventional materials for improving optical components as well as realizing new optical functionality. Here we demonstrate multilayer, lithographically patterned, subwavelength, metal elements, whose distribution forms a computer-generated phase hologram in the infrared region (10.6 μm). Metal inclusions exhibit extremely large scattering and can be implemented in metamaterials that exhibit a wide range of effective medium response, including anomalously large or negative refractive index; optical magnetism; and controlled anisotropy. This large palette of metamaterial responses can be leveraged to achieve greater control over the propagation of light, leading to more compact, efficient and versatile optical components. More... »

PAGES

450

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat3278

DOI

http://dx.doi.org/10.1038/nmat3278

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053359906

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22426458


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larouche", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.01232750541.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232750541.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsai", 
        "givenName": "Yu-Ju", 
        "id": "sg:person.0624410522.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624410522.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tyler", 
        "givenName": "Talmage", 
        "id": "sg:person.0647071521.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647071521.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jokerst", 
        "givenName": "Nan M.", 
        "id": "sg:person.01145661721.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145661721.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "David R.", 
        "id": "sg:person.010631325304.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010631325304.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1125907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008055728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019262685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.024411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019290281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2009.290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022832614", 
          "https://doi.org/10.1038/nphoton.2009.290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023742282", 
          "https://doi.org/10.1038/nature09776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.195104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039436924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.195104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039436924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.25404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046076116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.22.001099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052471979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3587622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057980024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.205404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060630924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.205404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060630924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.39.003825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065115318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.10.001553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065157044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.21.002023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.30.002089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065223032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.000676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065228294"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05", 
    "datePublishedReg": "2012-05-01", 
    "description": "As a result of advances in nanotechnology and the burgeoning capabilities for fabricating materials with controlled nanoscale geometries, the traditional notion of what constitutes an optical device continues to evolve. The fusion of maturing low-cost lithographic techniques with newer optical design strategies has enabled the introduction of artificially structured metamaterials in place of conventional materials for improving optical components as well as realizing new optical functionality. Here we demonstrate multilayer, lithographically patterned, subwavelength, metal elements, whose distribution forms a computer-generated phase hologram in the infrared region (10.6 \u03bcm). Metal inclusions exhibit extremely large scattering and can be implemented in metamaterials that exhibit a wide range of effective medium response, including anomalously large or negative refractive index; optical magnetism; and controlled anisotropy. This large palette of metamaterial responses can be leveraged to achieve greater control over the propagation of light, leading to more compact, efficient and versatile optical components.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat3278", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Infrared metamaterial phase holograms", 
    "pagination": "450", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fe294ce7bfc6d161935adcba2e55ce4a5067e97001946069304436fb70790221"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22426458"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat3278"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053359906"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat3278", 
      "https://app.dimensions.ai/details/publication/pub.1053359906"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat3278"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3278'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3278'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3278'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3278'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat3278 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ndcf8bd99250146e4964a70cf19ecb8c6
4 schema:citation sg:pub.10.1038/nature09776
5 sg:pub.10.1038/nphoton.2009.290
6 https://doi.org/10.1002/app.25404
7 https://doi.org/10.1063/1.3587622
8 https://doi.org/10.1103/physrevb.65.195104
9 https://doi.org/10.1103/physrevb.80.205404
10 https://doi.org/10.1103/physreve.81.036605
11 https://doi.org/10.1126/science.1125907
12 https://doi.org/10.1126/science.1133628
13 https://doi.org/10.1364/ao.22.001099
14 https://doi.org/10.1364/ao.39.003825
15 https://doi.org/10.1364/josaa.10.001553
16 https://doi.org/10.1364/oe.19.024411
17 https://doi.org/10.1364/ol.21.002023
18 https://doi.org/10.1364/ol.30.002089
19 https://doi.org/10.1364/ol.35.000676
20 schema:datePublished 2012-05
21 schema:datePublishedReg 2012-05-01
22 schema:description As a result of advances in nanotechnology and the burgeoning capabilities for fabricating materials with controlled nanoscale geometries, the traditional notion of what constitutes an optical device continues to evolve. The fusion of maturing low-cost lithographic techniques with newer optical design strategies has enabled the introduction of artificially structured metamaterials in place of conventional materials for improving optical components as well as realizing new optical functionality. Here we demonstrate multilayer, lithographically patterned, subwavelength, metal elements, whose distribution forms a computer-generated phase hologram in the infrared region (10.6 μm). Metal inclusions exhibit extremely large scattering and can be implemented in metamaterials that exhibit a wide range of effective medium response, including anomalously large or negative refractive index; optical magnetism; and controlled anisotropy. This large palette of metamaterial responses can be leveraged to achieve greater control over the propagation of light, leading to more compact, efficient and versatile optical components.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N0194f6b4e17448eeb40531370e57fde5
27 N2153f0a5d8694363b9f734d2af1ec029
28 sg:journal.1031408
29 schema:name Infrared metamaterial phase holograms
30 schema:pagination 450
31 schema:productId N25c7acd6603c4aee957e618da13c7e9a
32 N3b369da635c745f79db8a1af15eab6b9
33 N3e1c851f642b4cfcb87853af12710e14
34 N8e76ec0796d74769b4c28aabccb9e792
35 Nddc79cc603db4db98c6a2382862c7bd5
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053359906
37 https://doi.org/10.1038/nmat3278
38 schema:sdDatePublished 2019-04-10T22:20
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N19e581531e2a4b27bfd8878b1ee4db5b
41 schema:url https://www.nature.com/articles/nmat3278
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0194f6b4e17448eeb40531370e57fde5 schema:volumeNumber 11
46 rdf:type schema:PublicationVolume
47 N19e581531e2a4b27bfd8878b1ee4db5b schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N1cfa2f72f54e4575a577d7cc9af75e36 rdf:first sg:person.010631325304.99
50 rdf:rest rdf:nil
51 N2153f0a5d8694363b9f734d2af1ec029 schema:issueNumber 5
52 rdf:type schema:PublicationIssue
53 N25c7acd6603c4aee957e618da13c7e9a schema:name readcube_id
54 schema:value fe294ce7bfc6d161935adcba2e55ce4a5067e97001946069304436fb70790221
55 rdf:type schema:PropertyValue
56 N3b369da635c745f79db8a1af15eab6b9 schema:name dimensions_id
57 schema:value pub.1053359906
58 rdf:type schema:PropertyValue
59 N3e1c851f642b4cfcb87853af12710e14 schema:name nlm_unique_id
60 schema:value 101155473
61 rdf:type schema:PropertyValue
62 N49e823f1269a41f5a7066120408908e6 rdf:first sg:person.0647071521.42
63 rdf:rest Ncad21cca93d64c2fbedc5f7841324b44
64 N8e76ec0796d74769b4c28aabccb9e792 schema:name pubmed_id
65 schema:value 22426458
66 rdf:type schema:PropertyValue
67 Ncad21cca93d64c2fbedc5f7841324b44 rdf:first sg:person.01145661721.17
68 rdf:rest N1cfa2f72f54e4575a577d7cc9af75e36
69 Ndcf8bd99250146e4964a70cf19ecb8c6 rdf:first sg:person.01232750541.16
70 rdf:rest Nf706283ab39943ae9a5bc6f6cadab948
71 Nddc79cc603db4db98c6a2382862c7bd5 schema:name doi
72 schema:value 10.1038/nmat3278
73 rdf:type schema:PropertyValue
74 Nf706283ab39943ae9a5bc6f6cadab948 rdf:first sg:person.0624410522.33
75 rdf:rest N49e823f1269a41f5a7066120408908e6
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1031408 schema:issn 1476-1122
83 1476-4660
84 schema:name Nature Materials
85 rdf:type schema:Periodical
86 sg:person.010631325304.99 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
87 schema:familyName Smith
88 schema:givenName David R.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010631325304.99
90 rdf:type schema:Person
91 sg:person.01145661721.17 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
92 schema:familyName Jokerst
93 schema:givenName Nan M.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145661721.17
95 rdf:type schema:Person
96 sg:person.01232750541.16 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
97 schema:familyName Larouche
98 schema:givenName Stéphane
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232750541.16
100 rdf:type schema:Person
101 sg:person.0624410522.33 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
102 schema:familyName Tsai
103 schema:givenName Yu-Ju
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624410522.33
105 rdf:type schema:Person
106 sg:person.0647071521.42 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
107 schema:familyName Tyler
108 schema:givenName Talmage
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647071521.42
110 rdf:type schema:Person
111 sg:pub.10.1038/nature09776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023742282
112 https://doi.org/10.1038/nature09776
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nphoton.2009.290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022832614
115 https://doi.org/10.1038/nphoton.2009.290
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/app.25404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046076116
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.3587622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057980024
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.65.195104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039436924
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.80.205404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060630924
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreve.81.036605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740320
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1126/science.1125907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008055728
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.1133628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019262685
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1364/ao.22.001099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052471979
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1364/ao.39.003825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065115318
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1364/josaa.10.001553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065157044
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1364/oe.19.024411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019290281
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1364/ol.21.002023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217129
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1364/ol.30.002089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223032
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1364/ol.35.000676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065228294
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
146 schema:name Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Box 90291, Durham, North Carolina 27708, USA
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...