Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06

AUTHORS

Zongping Chen, Wencai Ren, Libo Gao, Bilu Liu, Songfeng Pei, Hui-Ming Cheng

ABSTRACT

Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as ∼0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of ∼10 S cm(-1), which is ∼6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors. More... »

PAGES

424

Journal

TITLE

Nature Materials

ISSUE

6

VOLUME

10

Author Affiliations

Related Patents

  • Lithium Ion Battery Anode Containing Silicon Nanowires Grown In Situ In Pores Of Graphene Foam And Production Process
  • Percolated Microstructures For Multi-Modal Transport Enhancement In Porous Active Materials
  • Supercapacitor Having Highly Conductive Graphene Foam Electrode
  • Supercapacitor Electrode Having Highly Oriented And Closely Packed Graphene Sheets And Production Process
  • Synthesis Of Three-Dimensional Graphene Foam: Use As Supercapacitors
  • Graphene-Based Films In Sensor Applications
  • Chemical Vapor Deposition Graphene Foam Electrodes For Pseudo-Capacitors
  • Continuous Process For Producing Electrodes For Supercapacitors Having High Energy Densities
  • Patterned Structures Of Graphene And Graphitic Carbon And Methods For Their Manufacture
  • Three-Dimensional Graphene Composite, Preparation Method For The Same, And Supercapacitor Comprising The Same
  • Three-Dimensional (3d) Printing Of Graphene Materials
  • Flexible And Shape-Conformal Rope-Shape Alkali Metal-Sulfur Batteries
  • Percolated Microstructures For Multi-Modal Transport Enhancement In Porous Active Materials
  • Graphene-Based Materials
  • Carbon Nanosheets
  • Popcorn-Like Growth Of Graphene-Carbon Nanotube Multi-Stack Hybrid Three-Dimensional Architecture For Energy Storage Devices
  • Chemical Vapor Deposition Graphene Foam Electrodes For Pseudo-Capacitors
  • Method For Producing Foam-Shaped Graphene Structure By Boiling, And Foam-Shaped Graphene Structure Using Same
  • Continuous Process For Producing Electrodes For Supercapacitors Having High Energy Densities
  • Method Of Producing Alkali Metal Or Alkali-Ion Batteries Having High Volumetric And Gravimetric Energy Densities
  • Process For Producing Flexible And Shape-Conformal Rope-Shape Alkali Metal Batteries
  • Inkjet-Printed Flexible Electronic Components From Graphene Oxide
  • Synthesis Of Three-Dimensional Graphene Foam: Use As Supercapacitors
  • Method Of Producing Supercapacitor Electrodes And Cells Having High Active Mass Loading
  • High-Throughput Graphene Printing And Selective Transfer Using A Localized Laser Heating Technique
  • Production Process For A Supercapacitor Having A High Volumetric Energy Density
  • Patterned Structures Of Graphene And Graphitic Carbon And Methods For Their Manufacture
  • Graphene-Based Materials
  • High Specific Area Composite Foam And An Associated Method Of Fabrication
  • Granules Of Graphene Oxide By Spray Drying
  • High Electro-Thermal Performance 3d Scaffold Embedded Polyimide For Various Applications
  • Sorbents For Carbon Dioxide Capture
  • Synthesis Of Three-Dimensional Graphene Foam: Use As Supercapacitors
  • Graphene-Carbon Nanotube Hybrid Materials And Use As Electrodes
  • Synthesis Of Three-Dimensional Graphene Foam: Use As Supercapacitors
  • Flexible And Shape-Conformal Rope-Shape Supercapacitors
  • Method Of Manufacturing A Flexible And/Or Stretchable Electronic Device
  • Alkali Metal Or Alkali-Ion Batteries Having High Volumetric And Gravimetric Energy Densities
  • Process For Producing Alkali Metal Or Alkali-Ion Batteries Having High Volumetric And Gravimetric Energy Densities
  • Porous Particles Of Interconnected 3d Graphene As A Supercapacitor Electrode Active Material And Production Process
  • Ultra-Fast Rechargeable Metal-Ion Battery
  • Filter Fabrication Method And The Filter Formed Thereby
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat3001

    DOI

    http://dx.doi.org/10.1038/nmat3001

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012942287

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21478883


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Metals Research", 
              "id": "https://www.grid.ac/institutes/grid.458487.2", 
              "name": [
                "Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Zongping", 
            "id": "sg:person.0674154550.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674154550.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Metals Research", 
              "id": "https://www.grid.ac/institutes/grid.458487.2", 
              "name": [
                "Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ren", 
            "givenName": "Wencai", 
            "id": "sg:person.0724562133.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724562133.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Metals Research", 
              "id": "https://www.grid.ac/institutes/grid.458487.2", 
              "name": [
                "Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Libo", 
            "id": "sg:person.01025347574.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025347574.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Metals Research", 
              "id": "https://www.grid.ac/institutes/grid.458487.2", 
              "name": [
                "Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Bilu", 
            "id": "sg:person.015563607277.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563607277.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Metals Research", 
              "id": "https://www.grid.ac/institutes/grid.458487.2", 
              "name": [
                "Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pei", 
            "givenName": "Songfeng", 
            "id": "sg:person.01256024574.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256024574.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Metals Research", 
              "id": "https://www.grid.ac/institutes/grid.458487.2", 
              "name": [
                "Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Hui-Ming", 
            "id": "sg:person.01306555031.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306555031.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nnano.2008.210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001026324", 
              "https://doi.org/10.1038/nnano.2008.210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001851571", 
              "https://doi.org/10.1038/nmat1782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1782", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001851571", 
              "https://doi.org/10.1038/nmat1782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0731872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002634830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0731872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002634830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2982585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003048201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200900765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004284996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200900765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004284996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1171245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006821145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1171245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006821145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010521124", 
              "https://doi.org/10.1038/nature07719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010593797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010593797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1157996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015876496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201006240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017684544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201006240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017684544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021073448", 
              "https://doi.org/10.1038/nature06016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022328266", 
              "https://doi.org/10.1038/nnano.2010.132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022328266", 
              "https://doi.org/10.1038/nnano.2010.132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027154969", 
              "https://doi.org/10.1038/nnano.2008.83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl052238x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030389762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl052238x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030389762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032209533", 
              "https://doi.org/10.1038/nnano.2008.215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034387569", 
              "https://doi.org/10.1038/nnano.2009.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2009.58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034387569", 
              "https://doi.org/10.1038/nnano.2009.58"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035065688", 
              "https://doi.org/10.1038/nnano.2008.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036191349", 
              "https://doi.org/10.1038/nmat2166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn101187z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039783635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801827v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040491531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl801827v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040491531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1125925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040736915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1160309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043695413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1182383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050910744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1182383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050910744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200803016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051914089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200803016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051914089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-06", 
        "datePublishedReg": "2011-06-01", 
        "description": "Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as \u223c0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of \u223c10 S cm(-1), which is \u223c6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat3001", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4957473", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4986197", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4939711", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition", 
        "pagination": "424", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3da88a753d8ba36f6deb4de5067528bb9f7c22fbb8e52bd1225ca804864a1df2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21478883"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat3001"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012942287"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat3001", 
          "https://app.dimensions.ai/details/publication/pub.1012942287"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000435.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nmat3001"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat3001'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat3001'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat3001'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat3001'


     

    This table displays all metadata directly associated to this object as RDF triples.

    214 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat3001 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nd0fd1ad023834ca0bbe12de2cf0636ad
    4 schema:citation sg:pub.10.1038/nature04233
    5 sg:pub.10.1038/nature04235
    6 sg:pub.10.1038/nature04969
    7 sg:pub.10.1038/nature06016
    8 sg:pub.10.1038/nature07719
    9 sg:pub.10.1038/nmat1782
    10 sg:pub.10.1038/nmat1849
    11 sg:pub.10.1038/nmat2166
    12 sg:pub.10.1038/nnano.2008.210
    13 sg:pub.10.1038/nnano.2008.215
    14 sg:pub.10.1038/nnano.2008.83
    15 sg:pub.10.1038/nnano.2008.96
    16 sg:pub.10.1038/nnano.2009.58
    17 sg:pub.10.1038/nnano.2010.132
    18 https://doi.org/10.1002/adma.200803016
    19 https://doi.org/10.1002/anie.201006240
    20 https://doi.org/10.1002/smll.200900765
    21 https://doi.org/10.1021/nl052238x
    22 https://doi.org/10.1021/nl0731872
    23 https://doi.org/10.1021/nl801827v
    24 https://doi.org/10.1021/nn101187z
    25 https://doi.org/10.1063/1.2982585
    26 https://doi.org/10.1103/physrevlett.97.187401
    27 https://doi.org/10.1126/science.1102896
    28 https://doi.org/10.1126/science.1125925
    29 https://doi.org/10.1126/science.1157996
    30 https://doi.org/10.1126/science.1158877
    31 https://doi.org/10.1126/science.1160309
    32 https://doi.org/10.1126/science.1171245
    33 https://doi.org/10.1126/science.1182383
    34 schema:datePublished 2011-06
    35 schema:datePublishedReg 2011-06-01
    36 schema:description Integration of individual two-dimensional graphene sheets into macroscopic structures is essential for the application of graphene. A series of graphene-based composites and macroscopic structures have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as ∼0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of ∼10 S cm(-1), which is ∼6 orders of magnitude higher than chemically derived graphene-based composites. Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N737312a2cc5c4b89bb464c0c7f1dbffb
    41 Na80b6fa5d1684703b6f951f08840a127
    42 sg:journal.1031408
    43 schema:name Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
    44 schema:pagination 424
    45 schema:productId N03f59ee891a44f5d9abbd9ebbe18fafe
    46 N1c2c44a410174434a5c506515d0b4def
    47 N21b11cc36e4c4e6ca6aff9fffe0b8900
    48 N59ff2c9cbfc74c638ed9566684ed76b4
    49 Nacf03a869faf49b9a624abea1a5ad8fb
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012942287
    51 https://doi.org/10.1038/nmat3001
    52 schema:sdDatePublished 2019-04-10T22:20
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N3927e2fc36a24be5a19232e2a080d09d
    55 schema:url https://www.nature.com/articles/nmat3001
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N03f59ee891a44f5d9abbd9ebbe18fafe schema:name readcube_id
    60 schema:value 3da88a753d8ba36f6deb4de5067528bb9f7c22fbb8e52bd1225ca804864a1df2
    61 rdf:type schema:PropertyValue
    62 N1c2c44a410174434a5c506515d0b4def schema:name doi
    63 schema:value 10.1038/nmat3001
    64 rdf:type schema:PropertyValue
    65 N21b11cc36e4c4e6ca6aff9fffe0b8900 schema:name nlm_unique_id
    66 schema:value 101155473
    67 rdf:type schema:PropertyValue
    68 N3927e2fc36a24be5a19232e2a080d09d schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N59ff2c9cbfc74c638ed9566684ed76b4 schema:name dimensions_id
    71 schema:value pub.1012942287
    72 rdf:type schema:PropertyValue
    73 N5c7c8c45372a4a8c9cd0d3ee452837a0 rdf:first sg:person.01025347574.79
    74 rdf:rest Nbabe224ed46d474586e8bbc533478f8e
    75 N737312a2cc5c4b89bb464c0c7f1dbffb schema:volumeNumber 10
    76 rdf:type schema:PublicationVolume
    77 Na80b6fa5d1684703b6f951f08840a127 schema:issueNumber 6
    78 rdf:type schema:PublicationIssue
    79 Nacf03a869faf49b9a624abea1a5ad8fb schema:name pubmed_id
    80 schema:value 21478883
    81 rdf:type schema:PropertyValue
    82 Nbabe224ed46d474586e8bbc533478f8e rdf:first sg:person.015563607277.71
    83 rdf:rest Ne0883856afe84b1bb69ba7e61142ee36
    84 Nd0fd1ad023834ca0bbe12de2cf0636ad rdf:first sg:person.0674154550.79
    85 rdf:rest Ndb647bd3f68c4875a77651832e464320
    86 Ndb647bd3f68c4875a77651832e464320 rdf:first sg:person.0724562133.49
    87 rdf:rest N5c7c8c45372a4a8c9cd0d3ee452837a0
    88 Ne0883856afe84b1bb69ba7e61142ee36 rdf:first sg:person.01256024574.22
    89 rdf:rest Nf325ccbe254044d9a64f40ed1cc7e6a1
    90 Nf325ccbe254044d9a64f40ed1cc7e6a1 rdf:first sg:person.01306555031.32
    91 rdf:rest rdf:nil
    92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Engineering
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Materials Engineering
    97 rdf:type schema:DefinedTerm
    98 sg:grant.4939711 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3001
    99 rdf:type schema:MonetaryGrant
    100 sg:grant.4957473 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3001
    101 rdf:type schema:MonetaryGrant
    102 sg:grant.4986197 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat3001
    103 rdf:type schema:MonetaryGrant
    104 sg:journal.1031408 schema:issn 1476-1122
    105 1476-4660
    106 schema:name Nature Materials
    107 rdf:type schema:Periodical
    108 sg:person.01025347574.79 schema:affiliation https://www.grid.ac/institutes/grid.458487.2
    109 schema:familyName Gao
    110 schema:givenName Libo
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025347574.79
    112 rdf:type schema:Person
    113 sg:person.01256024574.22 schema:affiliation https://www.grid.ac/institutes/grid.458487.2
    114 schema:familyName Pei
    115 schema:givenName Songfeng
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256024574.22
    117 rdf:type schema:Person
    118 sg:person.01306555031.32 schema:affiliation https://www.grid.ac/institutes/grid.458487.2
    119 schema:familyName Cheng
    120 schema:givenName Hui-Ming
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306555031.32
    122 rdf:type schema:Person
    123 sg:person.015563607277.71 schema:affiliation https://www.grid.ac/institutes/grid.458487.2
    124 schema:familyName Liu
    125 schema:givenName Bilu
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015563607277.71
    127 rdf:type schema:Person
    128 sg:person.0674154550.79 schema:affiliation https://www.grid.ac/institutes/grid.458487.2
    129 schema:familyName Chen
    130 schema:givenName Zongping
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674154550.79
    132 rdf:type schema:Person
    133 sg:person.0724562133.49 schema:affiliation https://www.grid.ac/institutes/grid.458487.2
    134 schema:familyName Ren
    135 schema:givenName Wencai
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724562133.49
    137 rdf:type schema:Person
    138 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    139 https://doi.org/10.1038/nature04233
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    142 https://doi.org/10.1038/nature04235
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    145 https://doi.org/10.1038/nature04969
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/nature06016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073448
    148 https://doi.org/10.1038/nature06016
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
    151 https://doi.org/10.1038/nature07719
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/nmat1782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001851571
    154 https://doi.org/10.1038/nmat1782
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    157 https://doi.org/10.1038/nmat1849
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nmat2166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036191349
    160 https://doi.org/10.1038/nmat2166
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/nnano.2008.210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001026324
    163 https://doi.org/10.1038/nnano.2008.210
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nnano.2008.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032209533
    166 https://doi.org/10.1038/nnano.2008.215
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nnano.2008.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027154969
    169 https://doi.org/10.1038/nnano.2008.83
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nnano.2008.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035065688
    172 https://doi.org/10.1038/nnano.2008.96
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nnano.2009.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034387569
    175 https://doi.org/10.1038/nnano.2009.58
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nnano.2010.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022328266
    178 https://doi.org/10.1038/nnano.2010.132
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1002/adma.200803016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051914089
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1002/anie.201006240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017684544
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1002/smll.200900765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004284996
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1021/nl052238x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030389762
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1021/nl0731872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002634830
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1021/nl801827v schema:sameAs https://app.dimensions.ai/details/publication/pub.1040491531
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1021/nn101187z schema:sameAs https://app.dimensions.ai/details/publication/pub.1039783635
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1063/1.2982585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003048201
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1126/science.1157996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015876496
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1126/science.1158877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010593797
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1126/science.1160309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043695413
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1126/science.1171245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006821145
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1126/science.1182383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050910744
    211 rdf:type schema:CreativeWork
    212 https://www.grid.ac/institutes/grid.458487.2 schema:alternateName Institute of Metals Research
    213 schema:name Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
    214 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...