A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09

AUTHORS

S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno

ABSTRACT

Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA. More... »

PAGES

721

Journal

TITLE

Nature Materials

ISSUE

9

VOLUME

9

Author Affiliations

Related Patents

  • Engineered Magnetic Layer With Improved Perpendicular Anisotropy Using Glassing Agents For Spintronic Applications
  • Magnetic Junctions Using Asymmetric Free Layers And Suitable For Use In Spin Transfer Torque Memories
  • Magnetoresistance Effect Element And Magnetic Memory
  • Mgo Insertion Into Free Layer For Magnetic Memory Applications
  • High Thermal Stability Free Layer With High Out-Of-Plane Anisotropy For Magnetic Device Applications
  • Spin Transfer Torque Magnetic Tunnel Junction With Off-Centered Current Flow
  • Hybridized Oxide Capping Layer For Perpendicular Magnetic Anisotropy
  • Magnetoresistance Effect Element And Magnetic Memory
  • Spin Transfer Torque Structure For Mram Devices Having A Spin Current Injection Capping Layer
  • Engineered Magnetic Layer With Improved Perpendicular Anisotropy Using Glassing Agents For Spintronic Applications
  • General Structure For Computational Random Access Memory (Cram)
  • Magnetic Tunneling Junction Elements Having Magnetic Substructures(S) With A Perpendicular Anisotropy And Memories Using Such Magnetic Elements
  • Three-Dimensional Magnetic Field Sensor And Method Of Producing Same
  • Nonvolatile Magneto-Electric Random Access Memory Circuit With Burst Writing And Back-To-Back Reads
  • Multilayers Having Reduced Perpendicular Demagnetizing Field Using Moment Dilution For Spintronic Applications
  • Memory Element And Memory Device
  • Maintaining Coercive Field After High Temperature Anneal For Magnetic Device Applications With Perpendicular Magnetic Anisotropy
  • Magnetic Element With Improved Out-Of-Plane Anisotropy For Spintronic Applications
  • Oxidation Process Apparatus, Oxidation Method, And Method For Manufacturing Electronic Device
  • Nonvolatile Magneto-Electric Random Access Memory Circuit With Burst Writing And Back-To-Back Reads
  • Magnetic Tunnel Junction Device And Method Of Making Same
  • Hybridized Oxide Capping Layer For Perpendicular Magnetic Anisotropy
  • Amorphous Alloy Space For Perpendicular Mtjs
  • Perpendicular Magnetization Storage Element And Storage Device
  • Spin Wave Device And Logic Circuit Using Spin Wave Device
  • Magnetoresistance Effect Element And Magnetic Memory
  • Method And System For Providing Magnetic Tunneling Junctions Usable In Spin Transfer Torque Magnetic Memories
  • Perpendicular Magnetization Storage Element And Storage Device
  • Magnetic Memory Devices Having Junction Magnetic Layers And Buffer Layers And Related Methods
  • Multilayers Having Reduced Perpendicular Demagnetizing Field Using Moment Dilution For Spintronic Applications
  • Magnetoresistive Element And Magnetic Memory
  • Systems And Methods For Implementing Robust Magnetoelectric Junctions
  • Spin Transfer Torque Structure For Mram Devices Having A Spin Current Injection Capping Layer
  • Magnetoresistance Effect Element And Magnetic Memory
  • Structure And Method For Enhancing Interfacial Perpendicular Anisotropy In Cofe(B)/Mgo/Cofe(B) Magnetic Tunnel Junctions
  • Method Of Manufacturing Tunneling Magnetoresistive Element
  • Hybridized Oxide Capping Layer For Perpendicular Magnetic Anisotropy
  • Termination Layer-Compensated Tunneling Magnetoresistance In Ferrimagnetic Heusler Compounds With High Perpendicular Magnetic Anisotropy
  • Memory Element And Memory Device
  • Spin-Selective Electron Relay
  • Cobalt (Co) And Platinum (Pt)-Based Multilayer Thin Film Having Inverted Structure And Method For Manufacturing Same
  • Tunnel Magnetoresistive Effect Element And Random Access Memory Using Same
  • Perpendicularly Magnetized Ultrathin Film Exhibiting High Perpendicular Magnetic Anisotropy, Method For Manufacturing Same, And Application
  • Method And System For Providing Magnetic Tunneling Junctions Usable In Spin Transfer Torque Magnetic Memories
  • Memory Element And Memory Device
  • Magnetic Tunnel Junctions With Perpendicular Magnetization And Magnetic Random Access Memory
  • Magnetic Junctions Using Asymmetric Free Layers And Suitable For Use In Spin Transfer Torque Memories
  • Magneto-Electronic Devices And Methods Of Production
  • Magneto-Electronic Devices And Methods Of Production
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat2804

    DOI

    http://dx.doi.org/10.1038/nmat2804

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028007692

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20622862


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ikeda", 
            "givenName": "S.", 
            "id": "sg:person.012563507767.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012563507767.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hitachi (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.417547.4", 
              "name": [
                "Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "Hitachi Ltd, Advanced Research Laboratory, 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miura", 
            "givenName": "K.", 
            "id": "sg:person.01263006205.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263006205.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hitachi (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.417547.4", 
              "name": [
                "Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "Hitachi Ltd, Advanced Research Laboratory, 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamamoto", 
            "givenName": "H.", 
            "id": "sg:person.07561655537.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07561655537.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mizunuma", 
            "givenName": "K.", 
            "id": "sg:person.014357707047.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357707047.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gan", 
            "givenName": "H. D.", 
            "id": "sg:person.016275112055.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016275112055.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Endo", 
            "givenName": "M.", 
            "id": "sg:person.010253777311.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253777311.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kanai", 
            "givenName": "S.", 
            "id": "sg:person.012203301765.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203301765.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hitachi (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.417547.4", 
              "name": [
                "Hitachi Ltd, Advanced Research Laboratory, 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayakawa", 
            "givenName": "J.", 
            "id": "sg:person.013333007161.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013333007161.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matsukura", 
            "givenName": "F.", 
            "id": "sg:person.01252016371.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252016371.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohno", 
            "givenName": "H.", 
            "id": "sg:person.012111370661.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111370661.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007328853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2969711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020537978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2976435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042288684", 
              "https://doi.org/10.1038/nmat1595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042288684", 
              "https://doi.org/10.1038/nmat1595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physe.2009.11.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044943253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047761572", 
              "https://doi.org/10.1038/nmat1257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(87)90169-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051461862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(87)90169-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051461862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053403072", 
              "https://doi.org/10.1038/nmat1256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1459605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057708846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1483122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057711212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2198797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057845841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2709502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057858269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2838754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057878147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2840016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057878375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2894198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057879778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2913163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057881596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3057974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057902795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3064162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057906351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3182817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057917786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3265740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057927521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3429592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057950615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.088302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.92.088302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060827973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ted.2007.894617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061592474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.2008.2003059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061680845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.40.580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063066511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.45.3889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063076810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.63.3053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063114571"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-09", 
        "datePublishedReg": "2010-09-01", 
        "description": "Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1038/nmat2804", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "A perpendicular-anisotropy CoFeB\u2013MgO magnetic tunnel junction", 
        "pagination": "721", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "856bb143de2619d3dc31f70185d9dc89dbea4fc06e2379917f7cb295f5f29587"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20622862"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat2804"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028007692"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat2804", 
          "https://app.dimensions.ai/details/publication/pub.1028007692"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113670_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nmat2804"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2804'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2804'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2804'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2804'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat2804 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N9229af61d937457eb52c075c7c64fb0f
    4 schema:citation sg:pub.10.1038/nmat1256
    5 sg:pub.10.1038/nmat1257
    6 sg:pub.10.1038/nmat1595
    7 https://doi.org/10.1016/0304-8853(87)90169-7
    8 https://doi.org/10.1016/0304-8853(96)00062-5
    9 https://doi.org/10.1016/j.physe.2009.11.110
    10 https://doi.org/10.1063/1.1459605
    11 https://doi.org/10.1063/1.1483122
    12 https://doi.org/10.1063/1.2198797
    13 https://doi.org/10.1063/1.2709502
    14 https://doi.org/10.1063/1.2838754
    15 https://doi.org/10.1063/1.2840016
    16 https://doi.org/10.1063/1.2894198
    17 https://doi.org/10.1063/1.2913163
    18 https://doi.org/10.1063/1.2969711
    19 https://doi.org/10.1063/1.2976435
    20 https://doi.org/10.1063/1.3057974
    21 https://doi.org/10.1063/1.3064162
    22 https://doi.org/10.1063/1.3182817
    23 https://doi.org/10.1063/1.3265740
    24 https://doi.org/10.1063/1.3429592
    25 https://doi.org/10.1103/physrevb.54.9353
    26 https://doi.org/10.1103/physrevlett.92.088302
    27 https://doi.org/10.1109/ted.2007.894617
    28 https://doi.org/10.1109/tmag.2008.2003059
    29 https://doi.org/10.1143/jjap.40.580
    30 https://doi.org/10.1143/jjap.45.3889
    31 https://doi.org/10.1143/jpsj.63.3053
    32 schema:datePublished 2010-09
    33 schema:datePublishedReg 2010-09-01
    34 schema:description Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA.
    35 schema:genre non_research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N1876f7d8ef5a4ea18228b0875c803e5f
    39 Nf44de52649f149219ce53eb3d0645269
    40 sg:journal.1031408
    41 schema:name A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction
    42 schema:pagination 721
    43 schema:productId N1ed62fe7461542149306ad32887217d1
    44 N2e09f3c3a98b491bb3f0859c1b97be21
    45 Nb6123cb298b84ced9ca8d6bfd3ebd0eb
    46 Nc38a0f2c64a041f8bf3843056f23828d
    47 Nc4cd5ba7ee8d47f2b6d9998673045b55
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028007692
    49 https://doi.org/10.1038/nmat2804
    50 schema:sdDatePublished 2019-04-11T10:36
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N855e4714baf04d9b91547a778dde3423
    53 schema:url https://www.nature.com/articles/nmat2804
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N1876f7d8ef5a4ea18228b0875c803e5f schema:volumeNumber 9
    58 rdf:type schema:PublicationVolume
    59 N1ed62fe7461542149306ad32887217d1 schema:name nlm_unique_id
    60 schema:value 101155473
    61 rdf:type schema:PropertyValue
    62 N21026d67bf0a4314b1abacbc7bb73b91 rdf:first sg:person.016275112055.30
    63 rdf:rest N64b95e17c7ee42c09879ae154b7e7aa7
    64 N2e09f3c3a98b491bb3f0859c1b97be21 schema:name readcube_id
    65 schema:value 856bb143de2619d3dc31f70185d9dc89dbea4fc06e2379917f7cb295f5f29587
    66 rdf:type schema:PropertyValue
    67 N4db9a7a64ce14b51bbd27c7dc7e2262e rdf:first sg:person.012111370661.83
    68 rdf:rest rdf:nil
    69 N5fcadb6677f74e89b618c921258436a5 rdf:first sg:person.01263006205.21
    70 rdf:rest Ndcad89f3389740c0ad3cae578475c9e3
    71 N64b95e17c7ee42c09879ae154b7e7aa7 rdf:first sg:person.010253777311.68
    72 rdf:rest Nac0d80a469bb4154b97afadf4bb53ec6
    73 N855e4714baf04d9b91547a778dde3423 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N900210ac9f0540059a7f52f2c783ad70 rdf:first sg:person.014357707047.38
    76 rdf:rest N21026d67bf0a4314b1abacbc7bb73b91
    77 N9229af61d937457eb52c075c7c64fb0f rdf:first sg:person.012563507767.45
    78 rdf:rest N5fcadb6677f74e89b618c921258436a5
    79 Nac0d80a469bb4154b97afadf4bb53ec6 rdf:first sg:person.012203301765.35
    80 rdf:rest Nfe7d4125a2864aee81d72e7297fd9201
    81 Nb6123cb298b84ced9ca8d6bfd3ebd0eb schema:name pubmed_id
    82 schema:value 20622862
    83 rdf:type schema:PropertyValue
    84 Nc38a0f2c64a041f8bf3843056f23828d schema:name dimensions_id
    85 schema:value pub.1028007692
    86 rdf:type schema:PropertyValue
    87 Nc4cd5ba7ee8d47f2b6d9998673045b55 schema:name doi
    88 schema:value 10.1038/nmat2804
    89 rdf:type schema:PropertyValue
    90 Ndcad89f3389740c0ad3cae578475c9e3 rdf:first sg:person.07561655537.11
    91 rdf:rest N900210ac9f0540059a7f52f2c783ad70
    92 Nebd8d2435c0342e2ad11c8ef796a12ba rdf:first sg:person.01252016371.47
    93 rdf:rest N4db9a7a64ce14b51bbd27c7dc7e2262e
    94 Nf44de52649f149219ce53eb3d0645269 schema:issueNumber 9
    95 rdf:type schema:PublicationIssue
    96 Nfe7d4125a2864aee81d72e7297fd9201 rdf:first sg:person.013333007161.84
    97 rdf:rest Nebd8d2435c0342e2ad11c8ef796a12ba
    98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Engineering
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Materials Engineering
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1031408 schema:issn 1476-1122
    105 1476-4660
    106 schema:name Nature Materials
    107 rdf:type schema:Periodical
    108 sg:person.010253777311.68 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    109 schema:familyName Endo
    110 schema:givenName M.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253777311.68
    112 rdf:type schema:Person
    113 sg:person.012111370661.83 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    114 schema:familyName Ohno
    115 schema:givenName H.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111370661.83
    117 rdf:type schema:Person
    118 sg:person.012203301765.35 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    119 schema:familyName Kanai
    120 schema:givenName S.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203301765.35
    122 rdf:type schema:Person
    123 sg:person.01252016371.47 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    124 schema:familyName Matsukura
    125 schema:givenName F.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252016371.47
    127 rdf:type schema:Person
    128 sg:person.012563507767.45 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    129 schema:familyName Ikeda
    130 schema:givenName S.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012563507767.45
    132 rdf:type schema:Person
    133 sg:person.01263006205.21 schema:affiliation https://www.grid.ac/institutes/grid.417547.4
    134 schema:familyName Miura
    135 schema:givenName K.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263006205.21
    137 rdf:type schema:Person
    138 sg:person.013333007161.84 schema:affiliation https://www.grid.ac/institutes/grid.417547.4
    139 schema:familyName Hayakawa
    140 schema:givenName J.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013333007161.84
    142 rdf:type schema:Person
    143 sg:person.014357707047.38 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    144 schema:familyName Mizunuma
    145 schema:givenName K.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357707047.38
    147 rdf:type schema:Person
    148 sg:person.016275112055.30 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    149 schema:familyName Gan
    150 schema:givenName H. D.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016275112055.30
    152 rdf:type schema:Person
    153 sg:person.07561655537.11 schema:affiliation https://www.grid.ac/institutes/grid.417547.4
    154 schema:familyName Yamamoto
    155 schema:givenName H.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07561655537.11
    157 rdf:type schema:Person
    158 sg:pub.10.1038/nmat1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053403072
    159 https://doi.org/10.1038/nmat1256
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nmat1257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047761572
    162 https://doi.org/10.1038/nmat1257
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/nmat1595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042288684
    165 https://doi.org/10.1038/nmat1595
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0304-8853(87)90169-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051461862
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.physe.2009.11.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044943253
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1063/1.1459605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057708846
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1063/1.1483122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711212
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1063/1.2198797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845841
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1063/1.2709502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057858269
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1063/1.2838754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057878147
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1063/1.2840016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057878375
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1063/1.2894198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057879778
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1063/1.2913163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057881596
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1063/1.2969711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020537978
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1063/1.2976435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041746503
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1063/1.3057974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057902795
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1063/1.3064162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057906351
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1063/1.3182817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057917786
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1063/1.3265740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057927521
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1063/1.3429592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057950615
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrevlett.92.088302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827973
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/ted.2007.894617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061592474
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/tmag.2008.2003059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061680845
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1143/jjap.40.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063066511
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1143/jjap.45.3889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063076810
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1143/jpsj.63.3053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063114571
    216 rdf:type schema:CreativeWork
    217 https://www.grid.ac/institutes/grid.417547.4 schema:alternateName Hitachi (Japan)
    218 schema:name Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    219 Hitachi Ltd, Advanced Research Laboratory, 1-280 Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
    220 Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    221 rdf:type schema:Organization
    222 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
    223 schema:name Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    224 Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...