Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03

AUTHORS

Ioan Mihai Miron, Gilles Gaudin, Stéphane Auffret, Bernard Rodmacq, Alain Schuhl, Stefania Pizzini, Jan Vogel, Pietro Gambardella

ABSTRACT

Methods to manipulate the magnetization of ferromagnets by means of local electric fields or current-induced spin transfer torque allow the design of integrated spintronic devices with reduced dimensions and energy consumption compared with conventional magnetic field actuation. An alternative way to induce a spin torque using an electric current has been proposed based on intrinsic spin-orbit magnetic fields and recently realized in a strained low-temperature ferromagnetic semiconductor. Here we demonstrate that strong magnetic fields can be induced in ferromagnetic metal films lacking structure inversion symmetry through the Rashba effect. Owing to the combination of spin-orbit and exchange interactions, we show that an electric current flowing in the plane of a Co layer with asymmetric Pt and AlO(x) interfaces produces an effective transverse magnetic field of 1 T per 10(8) A cm(-2). Besides its fundamental significance, the high efficiency of this process makes it a realistic candidate for room-temperature spintronic applications. More... »

PAGES

230

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2613

DOI

http://dx.doi.org/10.1038/nmat2613

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005987470

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20062047


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Centre d\u2019Investigaci\u00f3 en Nanoci\u00e8ncia i Nanotecnologia (ICN-CSIC), UAB Campus, E-08193 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miron", 
        "givenName": "Ioan Mihai", 
        "id": "sg:person.01250325047.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250325047.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaudin", 
        "givenName": "Gilles", 
        "id": "sg:person.0637566426.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637566426.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Auffret", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.01364553447.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364553447.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodmacq", 
        "givenName": "Bernard", 
        "id": "sg:person.01246322063.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246322063.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuhl", 
        "givenName": "Alain", 
        "id": "sg:person.01136740742.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136740742.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS/UJF, B.P. 166, F-38042 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pizzini", 
        "givenName": "Stefania", 
        "id": "sg:person.0755375747.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755375747.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut N\u00e9el", 
          "id": "https://www.grid.ac/institutes/grid.450308.a", 
          "name": [
            "Institut N\u00e9el, CNRS/UJF, B.P. 166, F-38042 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vogel", 
        "givenName": "Jan", 
        "id": "sg:person.01023511147.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023511147.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Centre d\u2019Investigaci\u00f3 en Nanoci\u00e8ncia i Nanotecnologia (ICN-CSIC), UAB Campus, E-08193 Barcelona, Spain", 
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats (ICREA), E-08010 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gambardella", 
        "givenName": "Pietro", 
        "id": "sg:person.01053105020.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053105020.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001003201", 
          "https://doi.org/10.1038/nmat2184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1082857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001269532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001294135", 
          "https://doi.org/10.1038/nphys1362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002220407", 
          "https://doi.org/10.1038/nmat2024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.2.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003251356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.2.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003251356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.214429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003764815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.214429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003764815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.201403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004032162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.201403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004032162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/43/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012355047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.033104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018736938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.033104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018736938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(90)90963-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021537964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(90)90963-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021537964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2007.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024773474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.256601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031694768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.256601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031694768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.176601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048920560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.176601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048920560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2007.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053616451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1833565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057825608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.1806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.1806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.024423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.024423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.094422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.137202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.137202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.186807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.186807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5429.867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1999-00213-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064235430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03", 
    "datePublishedReg": "2010-03-01", 
    "description": "Methods to manipulate the magnetization of ferromagnets by means of local electric fields or current-induced spin transfer torque allow the design of integrated spintronic devices with reduced dimensions and energy consumption compared with conventional magnetic field actuation. An alternative way to induce a spin torque using an electric current has been proposed based on intrinsic spin-orbit magnetic fields and recently realized in a strained low-temperature ferromagnetic semiconductor. Here we demonstrate that strong magnetic fields can be induced in ferromagnetic metal films lacking structure inversion symmetry through the Rashba effect. Owing to the combination of spin-orbit and exchange interactions, we show that an electric current flowing in the plane of a Co layer with asymmetric Pt and AlO(x) interfaces produces an effective transverse magnetic field of 1 T per 10(8) A cm(-2). Besides its fundamental significance, the high efficiency of this process makes it a realistic candidate for room-temperature spintronic applications.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1038/nmat2613", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3780027", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer", 
    "pagination": "230", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c854919fe64eea0dcf55c45de8c924828f5f80d450e5b823a9e0ea6f57835b6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20062047"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2613"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005987470"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2613", 
      "https://app.dimensions.ai/details/publication/pub.1005987470"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89816_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat2613"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2613'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2613'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2613'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2613'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2613 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb727a6c2c98b48fdb030c7dcf0d4a315
4 schema:citation sg:pub.10.1038/35050040
5 sg:pub.10.1038/nmat2024
6 sg:pub.10.1038/nmat2184
7 sg:pub.10.1038/nphys1362
8 https://doi.org/10.1016/0038-1098(90)90963-c
9 https://doi.org/10.1016/0304-8853(96)00062-5
10 https://doi.org/10.1016/j.jmmm.2007.12.013
11 https://doi.org/10.1016/j.jmmm.2007.12.019
12 https://doi.org/10.1063/1.1833565
13 https://doi.org/10.1088/0953-8984/16/43/002
14 https://doi.org/10.1103/physics.2.50
15 https://doi.org/10.1103/physrev.100.580
16 https://doi.org/10.1103/physrevb.38.1806
17 https://doi.org/10.1103/physrevb.54.9353
18 https://doi.org/10.1103/physrevb.67.033104
19 https://doi.org/10.1103/physrevb.71.201403
20 https://doi.org/10.1103/physrevb.77.214429
21 https://doi.org/10.1103/physrevb.78.212405
22 https://doi.org/10.1103/physrevb.79.024423
23 https://doi.org/10.1103/physrevb.79.094422
24 https://doi.org/10.1103/physrevlett.102.137202
25 https://doi.org/10.1103/physrevlett.77.3419
26 https://doi.org/10.1103/physrevlett.93.176601
27 https://doi.org/10.1103/physrevlett.97.256601
28 https://doi.org/10.1103/physrevlett.98.186807
29 https://doi.org/10.1126/science.1082857
30 https://doi.org/10.1126/science.1136629
31 https://doi.org/10.1126/science.285.5429.867
32 https://doi.org/10.1209/epl/i1999-00213-1
33 schema:datePublished 2010-03
34 schema:datePublishedReg 2010-03-01
35 schema:description Methods to manipulate the magnetization of ferromagnets by means of local electric fields or current-induced spin transfer torque allow the design of integrated spintronic devices with reduced dimensions and energy consumption compared with conventional magnetic field actuation. An alternative way to induce a spin torque using an electric current has been proposed based on intrinsic spin-orbit magnetic fields and recently realized in a strained low-temperature ferromagnetic semiconductor. Here we demonstrate that strong magnetic fields can be induced in ferromagnetic metal films lacking structure inversion symmetry through the Rashba effect. Owing to the combination of spin-orbit and exchange interactions, we show that an electric current flowing in the plane of a Co layer with asymmetric Pt and AlO(x) interfaces produces an effective transverse magnetic field of 1 T per 10(8) A cm(-2). Besides its fundamental significance, the high efficiency of this process makes it a realistic candidate for room-temperature spintronic applications.
36 schema:genre non_research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N106b4b058bc04fc6b52e9b9a0fd47664
40 N874265f968764f1a82cf8c7a1deefb7a
41 sg:journal.1031408
42 schema:name Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer
43 schema:pagination 230
44 schema:productId N22dca0372c6f47f4a4b275ebf917d4e7
45 N4886ba9c93714a9aa80d068aeff9dd65
46 N878cd33dea354001999f88d042e26664
47 N99f83f7d3cc54e0194ccda4fbca43b7d
48 N9de2ce52a7da474590fbbab5f6446cee
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
50 https://doi.org/10.1038/nmat2613
51 schema:sdDatePublished 2019-04-11T10:00
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N917f386c8dd649bc816d043d4dbab44c
54 schema:url https://www.nature.com/articles/nmat2613
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0151a75054624fb6919d571d8b4ab8b3 rdf:first sg:person.0755375747.99
59 rdf:rest N4025aa9f99394458aa72e0bbb4d7624f
60 N05a94d69e45f4a3da5a77e2db0fbaa76 rdf:first sg:person.01053105020.09
61 rdf:rest rdf:nil
62 N08d3a2dda5304985b4bd363496a5efd6 rdf:first sg:person.0637566426.29
63 rdf:rest N3dad7bc245714c49851340ce7d18cfb2
64 N106b4b058bc04fc6b52e9b9a0fd47664 schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 N21f9c8224fbc49519c16031723547d6e schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
67 rdf:type schema:Organization
68 N22dca0372c6f47f4a4b275ebf917d4e7 schema:name readcube_id
69 schema:value 1c854919fe64eea0dcf55c45de8c924828f5f80d450e5b823a9e0ea6f57835b6
70 rdf:type schema:PropertyValue
71 N3dad7bc245714c49851340ce7d18cfb2 rdf:first sg:person.01364553447.97
72 rdf:rest N98aba37be3354d62bd159b7ac0b00475
73 N4025aa9f99394458aa72e0bbb4d7624f rdf:first sg:person.01023511147.10
74 rdf:rest N05a94d69e45f4a3da5a77e2db0fbaa76
75 N4886ba9c93714a9aa80d068aeff9dd65 schema:name dimensions_id
76 schema:value pub.1005987470
77 rdf:type schema:PropertyValue
78 N61102a84d25842408cdc8a242132e988 schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
79 rdf:type schema:Organization
80 N874265f968764f1a82cf8c7a1deefb7a schema:volumeNumber 9
81 rdf:type schema:PublicationVolume
82 N878cd33dea354001999f88d042e26664 schema:name nlm_unique_id
83 schema:value 101155473
84 rdf:type schema:PropertyValue
85 N917f386c8dd649bc816d043d4dbab44c schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N96aad5828648445db8a33363f1ceea44 schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
88 rdf:type schema:Organization
89 N98aba37be3354d62bd159b7ac0b00475 rdf:first sg:person.01246322063.17
90 rdf:rest Nc0118a08fec045ddb587bc48db37ef94
91 N99f83f7d3cc54e0194ccda4fbca43b7d schema:name doi
92 schema:value 10.1038/nmat2613
93 rdf:type schema:PropertyValue
94 N9de2ce52a7da474590fbbab5f6446cee schema:name pubmed_id
95 schema:value 20062047
96 rdf:type schema:PropertyValue
97 Nb727a6c2c98b48fdb030c7dcf0d4a315 rdf:first sg:person.01250325047.37
98 rdf:rest N08d3a2dda5304985b4bd363496a5efd6
99 Nb9f12c26a9b54c5e8fa31cdbf7a1edf8 schema:name Centre d’Investigació en Nanociència i Nanotecnologia (ICN-CSIC), UAB Campus, E-08193 Barcelona, Spain
100 rdf:type schema:Organization
101 Nc0118a08fec045ddb587bc48db37ef94 rdf:first sg:person.01136740742.83
102 rdf:rest N0151a75054624fb6919d571d8b4ab8b3
103 Neb2825a6062247c8bc99b10f4918c789 schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
104 rdf:type schema:Organization
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:grant.3780027 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat2613
112 rdf:type schema:MonetaryGrant
113 sg:journal.1031408 schema:issn 1476-1122
114 1476-4660
115 schema:name Nature Materials
116 rdf:type schema:Periodical
117 sg:person.01023511147.10 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
118 schema:familyName Vogel
119 schema:givenName Jan
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023511147.10
121 rdf:type schema:Person
122 sg:person.01053105020.09 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
123 schema:familyName Gambardella
124 schema:givenName Pietro
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053105020.09
126 rdf:type schema:Person
127 sg:person.01136740742.83 schema:affiliation Neb2825a6062247c8bc99b10f4918c789
128 schema:familyName Schuhl
129 schema:givenName Alain
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136740742.83
131 rdf:type schema:Person
132 sg:person.01246322063.17 schema:affiliation N96aad5828648445db8a33363f1ceea44
133 schema:familyName Rodmacq
134 schema:givenName Bernard
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246322063.17
136 rdf:type schema:Person
137 sg:person.01250325047.37 schema:affiliation Nb9f12c26a9b54c5e8fa31cdbf7a1edf8
138 schema:familyName Miron
139 schema:givenName Ioan Mihai
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250325047.37
141 rdf:type schema:Person
142 sg:person.01364553447.97 schema:affiliation N21f9c8224fbc49519c16031723547d6e
143 schema:familyName Auffret
144 schema:givenName Stéphane
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364553447.97
146 rdf:type schema:Person
147 sg:person.0637566426.29 schema:affiliation N61102a84d25842408cdc8a242132e988
148 schema:familyName Gaudin
149 schema:givenName Gilles
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637566426.29
151 rdf:type schema:Person
152 sg:person.0755375747.99 schema:affiliation https://www.grid.ac/institutes/grid.450308.a
153 schema:familyName Pizzini
154 schema:givenName Stefania
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755375747.99
156 rdf:type schema:Person
157 sg:pub.10.1038/35050040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006678613
158 https://doi.org/10.1038/35050040
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmat2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002220407
161 https://doi.org/10.1038/nmat2024
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmat2184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001003201
164 https://doi.org/10.1038/nmat2184
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphys1362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001294135
167 https://doi.org/10.1038/nphys1362
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0038-1098(90)90963-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1021537964
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jmmm.2007.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024773474
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jmmm.2007.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053616451
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.1833565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057825608
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1088/0953-8984/16/43/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012355047
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physics.2.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003251356
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrev.100.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416832
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevb.38.1806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547112
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.67.033104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018736938
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.71.201403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004032162
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.77.214429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003764815
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.78.212405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626740
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.79.024423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627110
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.79.094422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627606
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.102.137202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755121
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.77.3419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814093
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.93.176601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048920560
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.97.256601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031694768
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.98.186807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833993
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1126/science.1082857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001269532
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.1136629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455054
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1209/epl/i1999-00213-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235430
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
220 schema:name Centre d’Investigació en Nanociència i Nanotecnologia (ICN-CSIC), UAB Campus, E-08193 Barcelona, Spain
221 Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.450308.a schema:alternateName Institut Néel
224 schema:name Institut Néel, CNRS/UJF, B.P. 166, F-38042 Grenoble, France
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...