Long lifetimes of quantum-dot intersublevel transitions in the terahertz range View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-10

AUTHORS

E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl, M. Helm, H. Y. Liu, M. S. Skolnick, L. R. Wilson

ABSTRACT

Carrier relaxation is a key issue in determining the efficiency of semiconductor optoelectronic device operation. Devices incorporating semiconductor quantum dots have the potential to overcome many of the limitations of quantum-well-based devices because of the predicted long quantum-dot excited-state lifetimes. For example, the population inversion required for terahertz laser operation in quantum-well-based devices (quantum-cascade lasers) is fundamentally limited by efficient scattering between the laser levels, which form a continuum in the plane of the quantum well. In this context, semiconductor quantum dots are a highly attractive alternative for terahertz devices, because of their intrinsic discrete energy levels. Here, we present the first measurements, and theoretical description, of the intersublevel carrier relaxation in quantum dots for transition energies in the few terahertz range. Long intradot relaxation times (1.5 ns) are found for level separations of 14 meV (3.4 THz), decreasing very strongly to approximately 2 ps at 30 meV (7 THz), in very good agreement with our microscopic theory of the carrier relaxation process. Our studies pave the way for quantum-dot terahertz device development, providing the fundamental knowledge of carrier relaxation times required for optimum device design. More... »

PAGES

803

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2511

DOI

http://dx.doi.org/10.1038/nmat2511

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024688701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19684587


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zibik", 
        "givenName": "E. A.", 
        "id": "sg:person.016022153161.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016022153161.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Pierre Aigrain, Ecole Normale Sup\u00e9rieure, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grange", 
        "givenName": "T.", 
        "id": "sg:person.01130357215.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357215.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carpenter", 
        "givenName": "B. A.", 
        "id": "sg:person.013063126273.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013063126273.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porter", 
        "givenName": "N. E.", 
        "id": "sg:person.0631236110.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631236110.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Pierre Aigrain, Ecole Normale Sup\u00e9rieure, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferreira", 
        "givenName": "R.", 
        "id": "sg:person.013472121663.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472121663.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Pierre Aigrain, Ecole Normale Sup\u00e9rieure, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastard", 
        "givenName": "G.", 
        "id": "sg:person.012440263455.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012440263455.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Institute of Ion Beam Physics and Material Research, Forschungszentrum Rossendorf, PO Box 510119, 01314 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stehr", 
        "givenName": "D.", 
        "id": "sg:person.01337625113.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337625113.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Institute of Ion Beam Physics and Material Research, Forschungszentrum Rossendorf, PO Box 510119, 01314 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winnerl", 
        "givenName": "S.", 
        "id": "sg:person.01017372314.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017372314.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz-Zentrum Dresden-Rossendorf", 
          "id": "https://www.grid.ac/institutes/grid.40602.30", 
          "name": [
            "Institute of Ion Beam Physics and Material Research, Forschungszentrum Rossendorf, PO Box 510119, 01314 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helm", 
        "givenName": "M.", 
        "id": "sg:person.01117110257.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117110257.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "EPSRC National Centre for III\u2013V Technologies, Sheffield S1 3JD, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "H. Y.", 
        "id": "sg:person.012254036302.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012254036302.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skolnick", 
        "givenName": "M. S.", 
        "id": "sg:person.01353424504.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353424504.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilson", 
        "givenName": "L. R.", 
        "id": "sg:person.01155232424.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155232424.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/19/29/295201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004042116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016529686", 
          "https://doi.org/10.1038/nphoton.2008.251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.3085992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016918115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/417156a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027918831", 
          "https://doi.org/10.1038/417156a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/417156a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027918831", 
          "https://doi.org/10.1038/417156a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.241304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034342047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.241304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034342047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037539242", 
          "https://doi.org/10.1038/nature00976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037539242", 
          "https://doi.org/10.1038/nature00976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.266806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043172027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.266806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043172027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2724893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057860788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.358483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057979478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.8947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060556198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.8947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060556198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.10945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.10945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060558570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.5171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.5171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.r4355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.r4355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.15368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.15368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.5069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.5069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.5688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.5688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r4809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.r4809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.161306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.161306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060606285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.161305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.161305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.161302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.161302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060619051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.4930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.177402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.177402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.264.5158.553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-10", 
    "datePublishedReg": "2009-10-01", 
    "description": "Carrier relaxation is a key issue in determining the efficiency of semiconductor optoelectronic device operation. Devices incorporating semiconductor quantum dots have the potential to overcome many of the limitations of quantum-well-based devices because of the predicted long quantum-dot excited-state lifetimes. For example, the population inversion required for terahertz laser operation in quantum-well-based devices (quantum-cascade lasers) is fundamentally limited by efficient scattering between the laser levels, which form a continuum in the plane of the quantum well. In this context, semiconductor quantum dots are a highly attractive alternative for terahertz devices, because of their intrinsic discrete energy levels. Here, we present the first measurements, and theoretical description, of the intersublevel carrier relaxation in quantum dots for transition energies in the few terahertz range. Long intradot relaxation times (1.5 ns) are found for level separations of 14 meV (3.4 THz), decreasing very strongly to approximately 2 ps at 30 meV (7 THz), in very good agreement with our microscopic theory of the carrier relaxation process. Our studies pave the way for quantum-dot terahertz device development, providing the fundamental knowledge of carrier relaxation times required for optimum device design.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat2511", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580415", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2762483", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Long lifetimes of quantum-dot intersublevel transitions in the terahertz range", 
    "pagination": "803", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "759e0b558a3ad1544ed39b2e31bb51e13edc7a5e04281463e8c6f882caa59971"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19684587"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2511"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024688701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2511", 
      "https://app.dimensions.ai/details/publication/pub.1024688701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64119_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat2511"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2511'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2511'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2511'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2511'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2511 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nf7c096e98e7543218d5aa0f2c8ad04ec
4 schema:citation sg:pub.10.1038/417156a
5 sg:pub.10.1038/nature00976
6 sg:pub.10.1038/nphoton.2008.251
7 https://doi.org/10.1063/1.125019
8 https://doi.org/10.1063/1.2724893
9 https://doi.org/10.1063/1.358483
10 https://doi.org/10.1088/0953-8984/19/29/295201
11 https://doi.org/10.1103/physrevb.42.8947
12 https://doi.org/10.1103/physrevb.44.10945
13 https://doi.org/10.1103/physrevb.55.5171
14 https://doi.org/10.1103/physrevb.56.r4355
15 https://doi.org/10.1103/physrevb.59.15368
16 https://doi.org/10.1103/physrevb.59.5069
17 https://doi.org/10.1103/physrevb.59.5688
18 https://doi.org/10.1103/physrevb.62.r4809
19 https://doi.org/10.1103/physrevb.67.161306
20 https://doi.org/10.1103/physrevb.70.161305
21 https://doi.org/10.1103/physrevb.74.161302
22 https://doi.org/10.1103/physrevb.76.241304
23 https://doi.org/10.1103/physrevlett.80.1940
24 https://doi.org/10.1103/physrevlett.83.4152
25 https://doi.org/10.1103/physrevlett.86.4930
26 https://doi.org/10.1103/physrevlett.88.177402
27 https://doi.org/10.1103/physrevlett.95.266806
28 https://doi.org/10.1117/1.3085992
29 https://doi.org/10.1126/science.264.5158.553
30 schema:datePublished 2009-10
31 schema:datePublishedReg 2009-10-01
32 schema:description Carrier relaxation is a key issue in determining the efficiency of semiconductor optoelectronic device operation. Devices incorporating semiconductor quantum dots have the potential to overcome many of the limitations of quantum-well-based devices because of the predicted long quantum-dot excited-state lifetimes. For example, the population inversion required for terahertz laser operation in quantum-well-based devices (quantum-cascade lasers) is fundamentally limited by efficient scattering between the laser levels, which form a continuum in the plane of the quantum well. In this context, semiconductor quantum dots are a highly attractive alternative for terahertz devices, because of their intrinsic discrete energy levels. Here, we present the first measurements, and theoretical description, of the intersublevel carrier relaxation in quantum dots for transition energies in the few terahertz range. Long intradot relaxation times (1.5 ns) are found for level separations of 14 meV (3.4 THz), decreasing very strongly to approximately 2 ps at 30 meV (7 THz), in very good agreement with our microscopic theory of the carrier relaxation process. Our studies pave the way for quantum-dot terahertz device development, providing the fundamental knowledge of carrier relaxation times required for optimum device design.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N67e1229f4b7d4a3d9515e4a25bcc5d27
37 N68d9ce33ff8544ccabf67de577f4dcfe
38 sg:journal.1031408
39 schema:name Long lifetimes of quantum-dot intersublevel transitions in the terahertz range
40 schema:pagination 803
41 schema:productId N1086d07046ce42fa9e3752716bf2b63e
42 N5883b88ff8fb4a02b6b0ec98aed5e244
43 N80388a7198c644a3bfce41364647b1a9
44 Nc23e73af44124f18a48209f7d59aad90
45 Ndc35597f34f84d14b4ea3895a8d20311
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024688701
47 https://doi.org/10.1038/nmat2511
48 schema:sdDatePublished 2019-04-11T09:27
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N14c635b0fd7649de94eeaa4eb08d5ef9
51 schema:url https://www.nature.com/articles/nmat2511
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1086d07046ce42fa9e3752716bf2b63e schema:name pubmed_id
56 schema:value 19684587
57 rdf:type schema:PropertyValue
58 N14c635b0fd7649de94eeaa4eb08d5ef9 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N22c11c93f25e4965bd2c1da993bfff8a rdf:first sg:person.01155232424.85
61 rdf:rest rdf:nil
62 N36cdc9d9fb914aac9eb8e37dad2538f4 rdf:first sg:person.013063126273.48
63 rdf:rest Nb67e87334bb542a9a43faf8de696c3bc
64 N5883b88ff8fb4a02b6b0ec98aed5e244 schema:name nlm_unique_id
65 schema:value 101155473
66 rdf:type schema:PropertyValue
67 N63b84094c3564cf4a5a24f8f0b80f9e8 rdf:first sg:person.012440263455.89
68 rdf:rest N6b1a8409938e4396a1d5d7137982d536
69 N671040b47f3441a1be1190c2ee37f042 rdf:first sg:person.01017372314.86
70 rdf:rest N9ed89fdbf5b24011881d102e3c0f7f5b
71 N67e1229f4b7d4a3d9515e4a25bcc5d27 schema:volumeNumber 8
72 rdf:type schema:PublicationVolume
73 N68d9ce33ff8544ccabf67de577f4dcfe schema:issueNumber 10
74 rdf:type schema:PublicationIssue
75 N6b1a8409938e4396a1d5d7137982d536 rdf:first sg:person.01337625113.78
76 rdf:rest N671040b47f3441a1be1190c2ee37f042
77 N72fbbd41b8c347f291e6e6bc50eeead1 rdf:first sg:person.013472121663.95
78 rdf:rest N63b84094c3564cf4a5a24f8f0b80f9e8
79 N80388a7198c644a3bfce41364647b1a9 schema:name dimensions_id
80 schema:value pub.1024688701
81 rdf:type schema:PropertyValue
82 N9140f30343904e9fa676b90af552a474 rdf:first sg:person.012254036302.22
83 rdf:rest Nb5b380abc5e0414d9b28cdee2cbeb6fa
84 N9ed89fdbf5b24011881d102e3c0f7f5b rdf:first sg:person.01117110257.83
85 rdf:rest N9140f30343904e9fa676b90af552a474
86 Nb5b380abc5e0414d9b28cdee2cbeb6fa rdf:first sg:person.01353424504.09
87 rdf:rest N22c11c93f25e4965bd2c1da993bfff8a
88 Nb67e87334bb542a9a43faf8de696c3bc rdf:first sg:person.0631236110.39
89 rdf:rest N72fbbd41b8c347f291e6e6bc50eeead1
90 Nc23e73af44124f18a48209f7d59aad90 schema:name doi
91 schema:value 10.1038/nmat2511
92 rdf:type schema:PropertyValue
93 Ncd30b474d522462e8c20fef373d3911f rdf:first sg:person.01130357215.32
94 rdf:rest N36cdc9d9fb914aac9eb8e37dad2538f4
95 Ndc35597f34f84d14b4ea3895a8d20311 schema:name readcube_id
96 schema:value 759e0b558a3ad1544ed39b2e31bb51e13edc7a5e04281463e8c6f882caa59971
97 rdf:type schema:PropertyValue
98 Neb286a10aacb4b89a372ecc21efb705f schema:name EPSRC National Centre for III–V Technologies, Sheffield S1 3JD, UK
99 rdf:type schema:Organization
100 Nf7c096e98e7543218d5aa0f2c8ad04ec rdf:first sg:person.016022153161.27
101 rdf:rest Ncd30b474d522462e8c20fef373d3911f
102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
106 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
107 rdf:type schema:DefinedTerm
108 sg:grant.2762483 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat2511
109 rdf:type schema:MonetaryGrant
110 sg:grant.7580415 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat2511
111 rdf:type schema:MonetaryGrant
112 sg:journal.1031408 schema:issn 1476-1122
113 1476-4660
114 schema:name Nature Materials
115 rdf:type schema:Periodical
116 sg:person.01017372314.86 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
117 schema:familyName Winnerl
118 schema:givenName S.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017372314.86
120 rdf:type schema:Person
121 sg:person.01117110257.83 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
122 schema:familyName Helm
123 schema:givenName M.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117110257.83
125 rdf:type schema:Person
126 sg:person.01130357215.32 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
127 schema:familyName Grange
128 schema:givenName T.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130357215.32
130 rdf:type schema:Person
131 sg:person.01155232424.85 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
132 schema:familyName Wilson
133 schema:givenName L. R.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155232424.85
135 rdf:type schema:Person
136 sg:person.012254036302.22 schema:affiliation Neb286a10aacb4b89a372ecc21efb705f
137 schema:familyName Liu
138 schema:givenName H. Y.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012254036302.22
140 rdf:type schema:Person
141 sg:person.012440263455.89 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
142 schema:familyName Bastard
143 schema:givenName G.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012440263455.89
145 rdf:type schema:Person
146 sg:person.013063126273.48 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
147 schema:familyName Carpenter
148 schema:givenName B. A.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013063126273.48
150 rdf:type schema:Person
151 sg:person.01337625113.78 schema:affiliation https://www.grid.ac/institutes/grid.40602.30
152 schema:familyName Stehr
153 schema:givenName D.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337625113.78
155 rdf:type schema:Person
156 sg:person.013472121663.95 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
157 schema:familyName Ferreira
158 schema:givenName R.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472121663.95
160 rdf:type schema:Person
161 sg:person.01353424504.09 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
162 schema:familyName Skolnick
163 schema:givenName M. S.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353424504.09
165 rdf:type schema:Person
166 sg:person.016022153161.27 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
167 schema:familyName Zibik
168 schema:givenName E. A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016022153161.27
170 rdf:type schema:Person
171 sg:person.0631236110.39 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
172 schema:familyName Porter
173 schema:givenName N. E.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631236110.39
175 rdf:type schema:Person
176 sg:pub.10.1038/417156a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027918831
177 https://doi.org/10.1038/417156a
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nature00976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037539242
180 https://doi.org/10.1038/nature00976
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nphoton.2008.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016529686
183 https://doi.org/10.1038/nphoton.2008.251
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.125019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689144
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.2724893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057860788
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.358483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057979478
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/0953-8984/19/29/295201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004042116
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.42.8947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060556198
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.44.10945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060558570
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.55.5171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584433
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.56.r4355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587015
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.59.15368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591262
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.59.5069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591754
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.59.5688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591810
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.62.r4809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598324
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.67.161306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060606285
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.70.161305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060611564
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.74.161302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060619051
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.76.241304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034342047
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.80.1940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816995
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.83.4152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820350
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.86.4930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823109
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.88.177402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824782
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.95.266806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043172027
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1117/1.3085992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016918115
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.264.5158.553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548045
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
232 schema:name Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.40602.30 schema:alternateName Helmholtz-Zentrum Dresden-Rossendorf
235 schema:name Institute of Ion Beam Physics and Material Research, Forschungszentrum Rossendorf, PO Box 510119, 01314 Dresden, Germany
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
238 schema:name Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...