Switchable self-protected attractions in DNA-functionalized colloids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-07

AUTHORS

Mirjam E. Leunissen, Rémi Dreyfus, Fook Chiong Cheong, David G. Grier, Roujie Sha, Nadrian C. Seeman, Paul M. Chaikin

ABSTRACT

Surface functionalization with DNA is a powerful tool for guiding the self-assembly of nanometre- and micrometre-sized particles. Complementary 'sticky ends' form specific inter-particle links and reproducibly bind at low temperature and unbind at high temperature. Surprisingly, the ability of single-stranded DNA to form folded secondary structures has not been explored for controlling (nano) colloidal assembly processes, despite its frequent use in DNA nanotechnology. Here, we show how loop and hairpin formation in the DNA coatings of micrometre-sized particles gives us in situ control over the inter-particle binding strength and association kinetics. We can finely tune and even switch off the attractions between particles, rendering them inert unless they are heated or held together--like a nano-contact glue. The novel kinetic control offered by the switchable self-protected attractions is explained with a simple quantitative model that emphasizes the competition between intra- and inter-particle hybridization, and the practical utility is demonstrated by the assembly of designer clusters in concentrated suspensions. With self-protection, both the suspension and assembly product are stable, whereas conventional attractive colloids would quickly aggregate. This remarkable functionality makes our self-protected colloids a novel material that greatly extends the utility of DNA-functionalized systems, enabling more versatile, multi-stage assembly approaches. More... »

PAGES

590

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2471

DOI

http://dx.doi.org/10.1038/nmat2471

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018097846

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19525950


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Particle Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leunissen", 
        "givenName": "Mirjam E.", 
        "id": "sg:person.01314126253.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314126253.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dreyfus", 
        "givenName": "R\u00e9mi", 
        "id": "sg:person.01025505406.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025505406.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheong", 
        "givenName": "Fook Chiong", 
        "id": "sg:person.01060466337.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060466337.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grier", 
        "givenName": "David G.", 
        "id": "sg:person.01025046563.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025046563.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Chemistry Department, New\u00a0York University, 100 Washington Square East, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sha", 
        "givenName": "Roujie", 
        "id": "sg:person.0752660416.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752660416.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Chemistry Department, New\u00a0York University, 100 Washington Square East, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeman", 
        "givenName": "Nadrian C.", 
        "id": "sg:person.01155412761.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaikin", 
        "givenName": "Paul M.", 
        "id": "sg:person.016355051605.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.88.17.7538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003019758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1154533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003880201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja021096v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005973055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja021096v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005973055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006800579", 
          "https://doi.org/10.1038/nature06560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.041406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013236743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.041406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013236743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015817057", 
          "https://doi.org/10.1038/nature06669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017187326", 
          "https://doi.org/10.1038/nature01935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017187326", 
          "https://doi.org/10.1038/nature01935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0500507102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021484242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0607991103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022040802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.103.020743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023790799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717946", 
          "https://doi.org/10.1038/382607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b817679e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034129617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b817679e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034129617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415062a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458584", 
          "https://doi.org/10.1038/415062a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415062a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458584", 
          "https://doi.org/10.1038/415062a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200700357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038577648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.013602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.013602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040403966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451528a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043160796", 
          "https://doi.org/10.1038/451528a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.15.8602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047697386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b618028k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050266025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051596194", 
          "https://doi.org/10.1038/nmat2338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955834", 
          "https://doi.org/10.1038/nature06508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la034376c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056145606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la034376c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056145606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0637566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056151763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.015504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.015504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.048301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.048301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.148303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.148303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.058302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3863253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062622013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/zpch-1918-9209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085339130"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-07", 
    "datePublishedReg": "2009-07-01", 
    "description": "Surface functionalization with DNA is a powerful tool for guiding the self-assembly of nanometre- and micrometre-sized particles. Complementary 'sticky ends' form specific inter-particle links and reproducibly bind at low temperature and unbind at high temperature. Surprisingly, the ability of single-stranded DNA to form folded secondary structures has not been explored for controlling (nano) colloidal assembly processes, despite its frequent use in DNA nanotechnology. Here, we show how loop and hairpin formation in the DNA coatings of micrometre-sized particles gives us in situ control over the inter-particle binding strength and association kinetics. We can finely tune and even switch off the attractions between particles, rendering them inert unless they are heated or held together--like a nano-contact glue. The novel kinetic control offered by the switchable self-protected attractions is explained with a simple quantitative model that emphasizes the competition between intra- and inter-particle hybridization, and the practical utility is demonstrated by the assembly of designer clusters in concentrated suspensions. With self-protection, both the suspension and assembly product are stable, whereas conventional attractive colloids would quickly aggregate. This remarkable functionality makes our self-protected colloids a novel material that greatly extends the utility of DNA-functionalized systems, enabling more versatile, multi-stage assembly approaches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat2471", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3090740", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Switchable self-protected attractions in DNA-functionalized colloids", 
    "pagination": "590", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "563aa69c0dedd74bf11a9b3ca899cf2900d05715323c19d6e5cba3de41101fd2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19525950"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2471"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018097846"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2471", 
      "https://app.dimensions.ai/details/publication/pub.1018097846"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64106_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat2471"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2471'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2471'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2471'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2471'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      66 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2471 schema:about N17ffc3e35c294696a30d797cd1d549f8
2 N2e5a900135f44df2987d0071653abc17
3 N8b24217a44b94e769a96bf7ecf860839
4 N8f8cf06227f5423d8f2de4f0044c9885
5 N8fa63d7c976b400782510ee1d319f0ce
6 Nb2b16c370a4d4d55955319df3ddf5ebe
7 Nfefe66674952493a8102806932ef6979
8 anzsrc-for:03
9 anzsrc-for:0306
10 schema:author Nd036f7bb5e384a36aadc87606812204a
11 schema:citation sg:pub.10.1038/35020524
12 sg:pub.10.1038/382607a0
13 sg:pub.10.1038/415062a
14 sg:pub.10.1038/451528a
15 sg:pub.10.1038/nature01935
16 sg:pub.10.1038/nature06508
17 sg:pub.10.1038/nature06560
18 sg:pub.10.1038/nature06669
19 sg:pub.10.1038/nmat2338
20 https://doi.org/10.1002/smll.200700357
21 https://doi.org/10.1021/ja021096v
22 https://doi.org/10.1021/la034376c
23 https://doi.org/10.1021/la0637566
24 https://doi.org/10.1039/b618028k
25 https://doi.org/10.1039/b817679e
26 https://doi.org/10.1073/pnas.0500507102
27 https://doi.org/10.1073/pnas.0607991103
28 https://doi.org/10.1073/pnas.88.17.7538
29 https://doi.org/10.1073/pnas.95.15.8602
30 https://doi.org/10.1093/nar/gkg595
31 https://doi.org/10.1103/physreve.74.041406
32 https://doi.org/10.1103/physrevlett.100.013602
33 https://doi.org/10.1103/physrevlett.102.015504
34 https://doi.org/10.1103/physrevlett.102.048301
35 https://doi.org/10.1103/physrevlett.89.148303
36 https://doi.org/10.1103/physrevlett.94.058302
37 https://doi.org/10.1126/science.1154533
38 https://doi.org/10.1126/science.3863253
39 https://doi.org/10.1515/zpch-1918-9209
40 https://doi.org/10.1529/biophysj.103.020743
41 schema:datePublished 2009-07
42 schema:datePublishedReg 2009-07-01
43 schema:description Surface functionalization with DNA is a powerful tool for guiding the self-assembly of nanometre- and micrometre-sized particles. Complementary 'sticky ends' form specific inter-particle links and reproducibly bind at low temperature and unbind at high temperature. Surprisingly, the ability of single-stranded DNA to form folded secondary structures has not been explored for controlling (nano) colloidal assembly processes, despite its frequent use in DNA nanotechnology. Here, we show how loop and hairpin formation in the DNA coatings of micrometre-sized particles gives us in situ control over the inter-particle binding strength and association kinetics. We can finely tune and even switch off the attractions between particles, rendering them inert unless they are heated or held together--like a nano-contact glue. The novel kinetic control offered by the switchable self-protected attractions is explained with a simple quantitative model that emphasizes the competition between intra- and inter-particle hybridization, and the practical utility is demonstrated by the assembly of designer clusters in concentrated suspensions. With self-protection, both the suspension and assembly product are stable, whereas conventional attractive colloids would quickly aggregate. This remarkable functionality makes our self-protected colloids a novel material that greatly extends the utility of DNA-functionalized systems, enabling more versatile, multi-stage assembly approaches.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N1504ee5ba8ca4a749153fd4df95c818e
48 Na35e97702ebc43518a3930780cc811df
49 sg:journal.1031408
50 schema:name Switchable self-protected attractions in DNA-functionalized colloids
51 schema:pagination 590
52 schema:productId N1c7e7db2be9b4f74b8d7f280ea26e89c
53 N6c2e5ba2fd2d4ad2a18bbcbdc4fa69fb
54 Nbbcdf90fa5124972bbc9959f44c10e8d
55 Nc6559d6c069d4f449037beb0ccac011e
56 Nffc856f25e90420aa8de43520f71e50a
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018097846
58 https://doi.org/10.1038/nmat2471
59 schema:sdDatePublished 2019-04-11T09:25
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Na18d07e635284b23bf2cc1ac77363824
62 schema:url https://www.nature.com/articles/nmat2471
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N1504ee5ba8ca4a749153fd4df95c818e schema:issueNumber 7
67 rdf:type schema:PublicationIssue
68 N17ffc3e35c294696a30d797cd1d549f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Models, Molecular
70 rdf:type schema:DefinedTerm
71 N1c7e7db2be9b4f74b8d7f280ea26e89c schema:name nlm_unique_id
72 schema:value 101155473
73 rdf:type schema:PropertyValue
74 N2e5a900135f44df2987d0071653abc17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Colloids
76 rdf:type schema:DefinedTerm
77 N41214f756e914e678a508fa3bd8e1df1 rdf:first sg:person.0752660416.47
78 rdf:rest N82220073e4fd43fabb7843c47d5165bf
79 N6c2e5ba2fd2d4ad2a18bbcbdc4fa69fb schema:name pubmed_id
80 schema:value 19525950
81 rdf:type schema:PropertyValue
82 N79295adedb234feea795d2634136e5af rdf:first sg:person.01025046563.71
83 rdf:rest N41214f756e914e678a508fa3bd8e1df1
84 N82220073e4fd43fabb7843c47d5165bf rdf:first sg:person.01155412761.86
85 rdf:rest Nea7c34fa4f584835b779b42bb8d8ae61
86 N8b24217a44b94e769a96bf7ecf860839 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Particle Size
88 rdf:type schema:DefinedTerm
89 N8f8cf06227f5423d8f2de4f0044c9885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name DNA
91 rdf:type schema:DefinedTerm
92 N8fa63d7c976b400782510ee1d319f0ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Temperature
94 rdf:type schema:DefinedTerm
95 Na18d07e635284b23bf2cc1ac77363824 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Na35e97702ebc43518a3930780cc811df schema:volumeNumber 8
98 rdf:type schema:PublicationVolume
99 Nac86d30f28e647299ac46e7bf52d3c5c rdf:first sg:person.01025505406.00
100 rdf:rest Nb706c44b4ba94a9482c711f315e93af7
101 Nb2b16c370a4d4d55955319df3ddf5ebe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Kinetics
103 rdf:type schema:DefinedTerm
104 Nb706c44b4ba94a9482c711f315e93af7 rdf:first sg:person.01060466337.42
105 rdf:rest N79295adedb234feea795d2634136e5af
106 Nbbcdf90fa5124972bbc9959f44c10e8d schema:name dimensions_id
107 schema:value pub.1018097846
108 rdf:type schema:PropertyValue
109 Nc6559d6c069d4f449037beb0ccac011e schema:name doi
110 schema:value 10.1038/nmat2471
111 rdf:type schema:PropertyValue
112 Nd036f7bb5e384a36aadc87606812204a rdf:first sg:person.01314126253.96
113 rdf:rest Nac86d30f28e647299ac46e7bf52d3c5c
114 Nea7c34fa4f584835b779b42bb8d8ae61 rdf:first sg:person.016355051605.83
115 rdf:rest rdf:nil
116 Nfefe66674952493a8102806932ef6979 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Nucleic Acid Conformation
118 rdf:type schema:DefinedTerm
119 Nffc856f25e90420aa8de43520f71e50a schema:name readcube_id
120 schema:value 563aa69c0dedd74bf11a9b3ca899cf2900d05715323c19d6e5cba3de41101fd2
121 rdf:type schema:PropertyValue
122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
123 schema:name Chemical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Chemistry (incl. Structural)
127 rdf:type schema:DefinedTerm
128 sg:grant.3090740 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat2471
129 rdf:type schema:MonetaryGrant
130 sg:journal.1031408 schema:issn 1476-1122
131 1476-4660
132 schema:name Nature Materials
133 rdf:type schema:Periodical
134 sg:person.01025046563.71 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
135 schema:familyName Grier
136 schema:givenName David G.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025046563.71
138 rdf:type schema:Person
139 sg:person.01025505406.00 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
140 schema:familyName Dreyfus
141 schema:givenName Rémi
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025505406.00
143 rdf:type schema:Person
144 sg:person.01060466337.42 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
145 schema:familyName Cheong
146 schema:givenName Fook Chiong
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060466337.42
148 rdf:type schema:Person
149 sg:person.01155412761.86 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
150 schema:familyName Seeman
151 schema:givenName Nadrian C.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86
153 rdf:type schema:Person
154 sg:person.01314126253.96 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
155 schema:familyName Leunissen
156 schema:givenName Mirjam E.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314126253.96
158 rdf:type schema:Person
159 sg:person.016355051605.83 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
160 schema:familyName Chaikin
161 schema:givenName Paul M.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355051605.83
163 rdf:type schema:Person
164 sg:person.0752660416.47 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
165 schema:familyName Sha
166 schema:givenName Roujie
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752660416.47
168 rdf:type schema:Person
169 sg:pub.10.1038/35020524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103352
170 https://doi.org/10.1038/35020524
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
173 https://doi.org/10.1038/382607a0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/415062a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038458584
176 https://doi.org/10.1038/415062a
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/451528a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043160796
179 https://doi.org/10.1038/451528a
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature01935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017187326
182 https://doi.org/10.1038/nature01935
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature06508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955834
185 https://doi.org/10.1038/nature06508
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature06560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006800579
188 https://doi.org/10.1038/nature06560
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature06669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015817057
191 https://doi.org/10.1038/nature06669
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nmat2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051596194
194 https://doi.org/10.1038/nmat2338
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/smll.200700357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038577648
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/ja021096v schema:sameAs https://app.dimensions.ai/details/publication/pub.1005973055
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/la034376c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056145606
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/la0637566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056151763
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1039/b618028k schema:sameAs https://app.dimensions.ai/details/publication/pub.1050266025
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1039/b817679e schema:sameAs https://app.dimensions.ai/details/publication/pub.1034129617
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1073/pnas.0500507102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484242
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1073/pnas.0607991103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022040802
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1073/pnas.88.17.7538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003019758
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1073/pnas.95.15.8602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047697386
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/nar/gkg595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618001
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physreve.74.041406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013236743
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.100.013602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040403966
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.102.015504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754607
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.102.048301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754738
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.89.148303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825405
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.94.058302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829866
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1154533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003880201
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.3863253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062622013
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1515/zpch-1918-9209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085339130
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1529/biophysj.103.020743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023790799
237 rdf:type schema:CreativeWork
238 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
239 schema:name Center for Soft Matter Research, Physics Department, New York University, 4 Washington Place, New York 10003, USA
240 Chemistry Department, New York University, 100 Washington Square East, New York 10003, USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...