Enhancement of ferroelectricity at metal–oxide interfaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-05

AUTHORS

Massimiliano Stengel, David Vanderbilt, Nicola A. Spaldin

ABSTRACT

The development of ultrathin ferroelectric capacitors for use in memory applications has been hampered by depolarization effects arising from the electrode-film interfaces. These can be characterized in terms of a reduced interface capacitance, or equivalently an 'effective dead layer' in contact with the electrode. Here, by performing first-principles calculations on four capacitor structures based on BaTiO(3) and PbTiO(3), we determine the intrinsic interfacial effects responsible for destabilizing the ferroelectric state in ultrathin-film devices. Although it has been widely believed that these are governed by the electronic screening properties at the interface, we show that they also depend crucially on the local chemical environment through the force constants of the metal oxide bonds. In particular, in the case of interfaces formed between AO-terminated perovskites and simple metals, we demonstrate a novel mechanism of interfacial ferroelectricity that produces an overall enhancement of the ferroelectric instability of the film, rather than its suppression as is usually assumed. The resulting 'negative dead layer' suggests a route to thin-film ferroelectric devices that are free of deleterious size effects. More... »

PAGES

392-397

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2429

DOI

http://dx.doi.org/10.1038/nmat2429

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030710076

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19377465


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Materials Department, University of California, Santa Barbara, California 93106-5050, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stengel", 
        "givenName": "Massimiliano", 
        "id": "sg:person.01127734215.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127734215.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanderbilt", 
        "givenName": "David", 
        "id": "sg:person.0577663540.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577663540.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Materials Department, University of California, Santa Barbara, California 93106-5050, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spaldin", 
        "givenName": "Nicola A.", 
        "id": "sg:person.01166335076.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166335076.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00150199708016102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000717390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000942002", 
          "https://doi.org/10.1038/nature01501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000942002", 
          "https://doi.org/10.1038/nature01501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cossms.2006.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001269705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.020101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005309007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.020101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005309007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.126469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005400381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/41/l04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005619956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.087601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013095069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.087601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013095069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jctn.2008.1101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017855007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(96)00003-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020143631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022677207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022677207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.77.1083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022677207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.6224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024767699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.6224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024767699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(84)90089-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029150603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(84)90089-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029150603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.205117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029659560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.205117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029659560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.024102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032073686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.024102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032073686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032660271", 
          "https://doi.org/10.1038/nphys1185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.257601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033836779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.257601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033836779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046710132", 
          "https://doi.org/10.1038/nature05148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046710132", 
          "https://doi.org/10.1038/nature05148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046710132", 
          "https://doi.org/10.1038/nature05148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.237602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049399098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.237602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049399098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052883004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052883004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1483105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057711196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1931063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057832747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2337009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057850261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2713934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057859290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.13953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.13953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.144104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.144104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.059901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.059901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.060101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.060101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060618391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.155421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.155421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060622706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.187402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.107603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.107603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.207601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.207601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/16.753713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061096453"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "The development of ultrathin ferroelectric capacitors for use in memory applications has been hampered by depolarization effects arising from the electrode-film interfaces. These can be characterized in terms of a reduced interface capacitance, or equivalently an 'effective dead layer' in contact with the electrode. Here, by performing first-principles calculations on four capacitor structures based on BaTiO(3) and PbTiO(3), we determine the intrinsic interfacial effects responsible for destabilizing the ferroelectric state in ultrathin-film devices. Although it has been widely believed that these are governed by the electronic screening properties at the interface, we show that they also depend crucially on the local chemical environment through the force constants of the metal oxide bonds. In particular, in the case of interfaces formed between AO-terminated perovskites and simple metals, we demonstrate a novel mechanism of interfacial ferroelectricity that produces an overall enhancement of the ferroelectric instability of the film, rather than its suppression as is usually assumed. The resulting 'negative dead layer' suggests a route to thin-film ferroelectric devices that are free of deleterious size effects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat2429", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4415942", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Enhancement of ferroelectricity at metal\u2013oxide interfaces", 
    "pagination": "392-397", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "924c6aa3b4241acbfe94e8926b958022ab421e0c5682a011e4b9da09d25d8f80"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19377465"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2429"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030710076"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2429", 
      "https://app.dimensions.ai/details/publication/pub.1030710076"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47963_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmat2429"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2429'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2429'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2429'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2429'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2429 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N70c5dd23f49b49d086ce2406244fac56
4 schema:citation sg:pub.10.1038/nature01501
5 sg:pub.10.1038/nature05148
6 sg:pub.10.1038/nphys1185
7 https://doi.org/10.1016/0022-3697(96)00003-0
8 https://doi.org/10.1016/0038-1098(84)90089-9
9 https://doi.org/10.1016/j.cossms.2006.06.003
10 https://doi.org/10.1063/1.126469
11 https://doi.org/10.1063/1.1483105
12 https://doi.org/10.1063/1.1931063
13 https://doi.org/10.1063/1.2337009
14 https://doi.org/10.1063/1.2713934
15 https://doi.org/10.1080/00150199708016102
16 https://doi.org/10.1088/0953-8984/16/41/l04
17 https://doi.org/10.1103/physrevb.50.17953
18 https://doi.org/10.1103/physrevb.55.13953
19 https://doi.org/10.1103/physrevb.58.6224
20 https://doi.org/10.1103/physrevb.71.024102
21 https://doi.org/10.1103/physrevb.71.144104
22 https://doi.org/10.1103/physrevb.72.020101
23 https://doi.org/10.1103/physrevb.74.059901
24 https://doi.org/10.1103/physrevb.74.060101
25 https://doi.org/10.1103/physrevb.74.205117
26 https://doi.org/10.1103/physrevb.75.205121
27 https://doi.org/10.1103/physrevb.76.155421
28 https://doi.org/10.1103/physrevlett.101.087601
29 https://doi.org/10.1103/physrevlett.95.187402
30 https://doi.org/10.1103/physrevlett.95.237602
31 https://doi.org/10.1103/physrevlett.95.257601
32 https://doi.org/10.1103/physrevlett.96.107603
33 https://doi.org/10.1103/physrevlett.98.207601
34 https://doi.org/10.1103/revmodphys.77.1083
35 https://doi.org/10.1109/16.753713
36 https://doi.org/10.1166/jctn.2008.1101
37 schema:datePublished 2009-05
38 schema:datePublishedReg 2009-05-01
39 schema:description The development of ultrathin ferroelectric capacitors for use in memory applications has been hampered by depolarization effects arising from the electrode-film interfaces. These can be characterized in terms of a reduced interface capacitance, or equivalently an 'effective dead layer' in contact with the electrode. Here, by performing first-principles calculations on four capacitor structures based on BaTiO(3) and PbTiO(3), we determine the intrinsic interfacial effects responsible for destabilizing the ferroelectric state in ultrathin-film devices. Although it has been widely believed that these are governed by the electronic screening properties at the interface, we show that they also depend crucially on the local chemical environment through the force constants of the metal oxide bonds. In particular, in the case of interfaces formed between AO-terminated perovskites and simple metals, we demonstrate a novel mechanism of interfacial ferroelectricity that produces an overall enhancement of the ferroelectric instability of the film, rather than its suppression as is usually assumed. The resulting 'negative dead layer' suggests a route to thin-film ferroelectric devices that are free of deleterious size effects.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N28bee070db6b45d0b743b4cfcebfd2da
44 N67b85e9cfcab4668afde568686dfe08e
45 sg:journal.1031408
46 schema:name Enhancement of ferroelectricity at metal–oxide interfaces
47 schema:pagination 392-397
48 schema:productId N3f9c025a25714f41b414d7bd216ec7cc
49 N6be6d9eda9934b8a9a100342379855d6
50 N7c95afe2f9544d2fb5594ec41328d9f6
51 Nee7ac6c900f44287ab2e5c1865f0057e
52 Nf7a00e81d72a44f0b7773c4d6193d651
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030710076
54 https://doi.org/10.1038/nmat2429
55 schema:sdDatePublished 2019-04-11T09:09
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N7fc43f37206f49dc985f5fdafbada6b3
58 schema:url http://www.nature.com/articles/nmat2429
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N28bee070db6b45d0b743b4cfcebfd2da schema:volumeNumber 8
63 rdf:type schema:PublicationVolume
64 N3f9c025a25714f41b414d7bd216ec7cc schema:name dimensions_id
65 schema:value pub.1030710076
66 rdf:type schema:PropertyValue
67 N67b85e9cfcab4668afde568686dfe08e schema:issueNumber 5
68 rdf:type schema:PublicationIssue
69 N6be6d9eda9934b8a9a100342379855d6 schema:name doi
70 schema:value 10.1038/nmat2429
71 rdf:type schema:PropertyValue
72 N70c5dd23f49b49d086ce2406244fac56 rdf:first sg:person.01127734215.77
73 rdf:rest Nd6b600a2b1c54a5eb81d44bf517b12a9
74 N7c95afe2f9544d2fb5594ec41328d9f6 schema:name pubmed_id
75 schema:value 19377465
76 rdf:type schema:PropertyValue
77 N7fc43f37206f49dc985f5fdafbada6b3 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Ncfbcf25e181d48abb658e08ab5dcdfbf rdf:first sg:person.01166335076.23
80 rdf:rest rdf:nil
81 Nd6b600a2b1c54a5eb81d44bf517b12a9 rdf:first sg:person.0577663540.73
82 rdf:rest Ncfbcf25e181d48abb658e08ab5dcdfbf
83 Nee7ac6c900f44287ab2e5c1865f0057e schema:name nlm_unique_id
84 schema:value 101155473
85 rdf:type schema:PropertyValue
86 Nf7a00e81d72a44f0b7773c4d6193d651 schema:name readcube_id
87 schema:value 924c6aa3b4241acbfe94e8926b958022ab421e0c5682a011e4b9da09d25d8f80
88 rdf:type schema:PropertyValue
89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Chemistry (incl. Structural)
94 rdf:type schema:DefinedTerm
95 sg:grant.4415942 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat2429
96 rdf:type schema:MonetaryGrant
97 sg:journal.1031408 schema:issn 1476-1122
98 1476-4660
99 schema:name Nature Materials
100 rdf:type schema:Periodical
101 sg:person.01127734215.77 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
102 schema:familyName Stengel
103 schema:givenName Massimiliano
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127734215.77
105 rdf:type schema:Person
106 sg:person.01166335076.23 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
107 schema:familyName Spaldin
108 schema:givenName Nicola A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166335076.23
110 rdf:type schema:Person
111 sg:person.0577663540.73 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
112 schema:familyName Vanderbilt
113 schema:givenName David
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577663540.73
115 rdf:type schema:Person
116 sg:pub.10.1038/nature01501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000942002
117 https://doi.org/10.1038/nature01501
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature05148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046710132
120 https://doi.org/10.1038/nature05148
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nphys1185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032660271
123 https://doi.org/10.1038/nphys1185
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0022-3697(96)00003-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020143631
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0038-1098(84)90089-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029150603
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.cossms.2006.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001269705
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.126469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005400381
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1483105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711196
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.1931063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057832747
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.2337009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057850261
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.2713934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057859290
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/00150199708016102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000717390
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0953-8984/16/41/l04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005619956
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.55.13953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583733
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.58.6224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024767699
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.71.024102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032073686
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.71.144104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060613267
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.72.020101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005309007
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.74.059901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060618390
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.74.060101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060618391
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.74.205117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029659560
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.75.205121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052883004
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.76.155421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060622706
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.101.087601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013095069
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.95.187402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831107
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.95.237602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049399098
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.95.257601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033836779
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.96.107603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831934
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.98.207601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834066
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/revmodphys.77.1083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022677207
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/16.753713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061096453
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1166/jctn.2008.1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017855007
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
186 schema:name Materials Department, University of California, Santa Barbara, California 93106-5050, USA
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
189 schema:name Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...