Stepwise surface encoding for high-throughput assembly of nanoclusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

Mathew M. Maye, Dmytro Nykypanchuk, Marine Cuisinier, Daniel van der Lelie, Oleg Gang

ABSTRACT

Self-assembly offers a promising method to organize functional nanoscale objects into two-dimensional (2D) and 3D superstructures for exploiting their collective effects. On the other hand, many unique phenomena emerge after arranging a few nanoscale objects into clusters, the so-called artificial molecules. The strategy of using biomolecular linkers between nanoparticles has proven especially useful for construction of such nanoclusters. However, conventional solution-based reactions typically yield a broad population of multimers or isomers of clusters; furthermore, the efficiency of fabrication is often limited. Here, we describe a novel high-throughput method for designing and fabricating clusters using DNA-encoded nanoparticles assembled on a solid support in a stepwise manner. This method efficiently imparts particles with anisotropy during their assembly and disassembly at a surface, generating remarkably high yields of well-defined dimer clusters and Janus (two-faced) nanoparticles. The method is scalable and modular, assuring large quantities of clusters of designated sizes and compositions. More... »

PAGES

388

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2421

DOI

http://dx.doi.org/10.1038/nmat2421

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009326937

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19329992


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomimetic Materials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptides", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymers", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Center for Functional Nanomaterials"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maye", 
        "givenName": "Mathew M.", 
        "id": "sg:person.01004747223.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004747223.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Functional Nanomaterials"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nykypanchuk", 
        "givenName": "Dmytro", 
        "id": "sg:person.0730426274.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730426274.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Functional Nanomaterials"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuisinier", 
        "givenName": "Marine", 
        "id": "sg:person.01247717455.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247717455.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brookhaven National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Lelie", 
        "givenName": "Daniel", 
        "id": "sg:person.01275345266.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345266.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Functional Nanomaterials"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gang", 
        "givenName": "Oleg", 
        "id": "sg:person.01046147116.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046147116.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ja046747x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004328640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja046747x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004328640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006800579", 
          "https://doi.org/10.1038/nature06560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061966x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007233409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061966x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007233409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013811778", 
          "https://doi.org/10.1038/382609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200463096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017598851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200463096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017598851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl071008a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019382444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl071008a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019382444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja710710j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020417419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja710710j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020417419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.166108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024527902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.166108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024527902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382607a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717946", 
          "https://doi.org/10.1038/382607a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031707081", 
          "https://doi.org/10.1038/nmat1869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032578633", 
          "https://doi.org/10.1038/nature01702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034742607", 
          "https://doi.org/10.1038/nbt1100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034742607", 
          "https://doi.org/10.1038/nbt1100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b505099e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b505099e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200700357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038577648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2006.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045768730", 
          "https://doi.org/10.1038/nnano.2006.51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2006.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045768730", 
          "https://doi.org/10.1038/nnano.2006.51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(74)90018-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045941135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(74)90018-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045941135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200400651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050190252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051722133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0515495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051722133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955834", 
          "https://doi.org/10.1038/nature06508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052149530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja061980b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00084a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055705408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00897a025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055755677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049578p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049578p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja070017i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja070017i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055844385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja711074n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055857562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja711074n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055857562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052210l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl052210l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073154m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl073154m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0802032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0802032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217696"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "Self-assembly offers a promising method to organize functional nanoscale objects into two-dimensional (2D) and 3D superstructures for exploiting their collective effects. On the other hand, many unique phenomena emerge after arranging a few nanoscale objects into clusters, the so-called artificial molecules. The strategy of using biomolecular linkers between nanoparticles has proven especially useful for construction of such nanoclusters. However, conventional solution-based reactions typically yield a broad population of multimers or isomers of clusters; furthermore, the efficiency of fabrication is often limited. Here, we describe a novel high-throughput method for designing and fabricating clusters using DNA-encoded nanoparticles assembled on a solid support in a stepwise manner. This method efficiently imparts particles with anisotropy during their assembly and disassembly at a surface, generating remarkably high yields of well-defined dimer clusters and Janus (two-faced) nanoparticles. The method is scalable and modular, assuring large quantities of clusters of designated sizes and compositions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat2421", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Stepwise surface encoding for high-throughput assembly of nanoclusters", 
    "pagination": "388", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c6e3983a4203326a8002002d835f3470956159a42a38d25242643d5f823ff52"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19329992"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2421"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009326937"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2421", 
      "https://app.dimensions.ai/details/publication/pub.1009326937"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47991_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat2421"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2421'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2421'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2421'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2421'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      65 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2421 schema:about N48e1fab5ea1e49199185b9d668a9b486
2 Nab3103fbe50b4d65990e3725ed13a8a8
3 Nc1c092573e6c4126abd4b49a5f8929e6
4 Nc996cb2ee5db4c67b80bdb8d0c31e6bf
5 Nef05999c5836474099b1a62fb1ca4c3b
6 Nf2e5d7d554dd491c974f1a34519656d7
7 anzsrc-for:03
8 anzsrc-for:0306
9 schema:author Nb86b9524234a4ce69c322b44cc032946
10 schema:citation sg:pub.10.1038/35020524
11 sg:pub.10.1038/382607a0
12 sg:pub.10.1038/382609a0
13 sg:pub.10.1038/nature01702
14 sg:pub.10.1038/nature06508
15 sg:pub.10.1038/nature06560
16 sg:pub.10.1038/nbt1100
17 sg:pub.10.1038/nmat1869
18 sg:pub.10.1038/nnano.2006.51
19 https://doi.org/10.1002/anie.200400651
20 https://doi.org/10.1002/anie.200463096
21 https://doi.org/10.1002/smll.200700357
22 https://doi.org/10.1016/0301-9322(74)90018-4
23 https://doi.org/10.1021/ja00084a006
24 https://doi.org/10.1021/ja00897a025
25 https://doi.org/10.1021/ja046747x
26 https://doi.org/10.1021/ja049578p
27 https://doi.org/10.1021/ja061980b
28 https://doi.org/10.1021/ja070017i
29 https://doi.org/10.1021/ja710710j
30 https://doi.org/10.1021/ja711074n
31 https://doi.org/10.1021/nl0515495
32 https://doi.org/10.1021/nl052210l
33 https://doi.org/10.1021/nl061966x
34 https://doi.org/10.1021/nl071008a
35 https://doi.org/10.1021/nl073154m
36 https://doi.org/10.1021/nl0802032
37 https://doi.org/10.1039/b505099e
38 https://doi.org/10.1103/physrevlett.93.166108
39 https://doi.org/10.1126/science.1133162
40 schema:datePublished 2009-05
41 schema:datePublishedReg 2009-05-01
42 schema:description Self-assembly offers a promising method to organize functional nanoscale objects into two-dimensional (2D) and 3D superstructures for exploiting their collective effects. On the other hand, many unique phenomena emerge after arranging a few nanoscale objects into clusters, the so-called artificial molecules. The strategy of using biomolecular linkers between nanoparticles has proven especially useful for construction of such nanoclusters. However, conventional solution-based reactions typically yield a broad population of multimers or isomers of clusters; furthermore, the efficiency of fabrication is often limited. Here, we describe a novel high-throughput method for designing and fabricating clusters using DNA-encoded nanoparticles assembled on a solid support in a stepwise manner. This method efficiently imparts particles with anisotropy during their assembly and disassembly at a surface, generating remarkably high yields of well-defined dimer clusters and Janus (two-faced) nanoparticles. The method is scalable and modular, assuring large quantities of clusters of designated sizes and compositions.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N8cfb78cc3ce04f0a899f8e57663d6fc3
47 Na4741794e5da43d887c65f4375256364
48 sg:journal.1031408
49 schema:name Stepwise surface encoding for high-throughput assembly of nanoclusters
50 schema:pagination 388
51 schema:productId N1113538d07aa4ca4b173a99122fd701b
52 N8337317480db4ea9997c0ee7628113a8
53 N900590063d1f4b1f8d4aa6f3e5b17b9d
54 Na91f6a87a78f4de4943371bd533c81b4
55 Ncce9a0494eea48c2ad93d3c201a203a3
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009326937
57 https://doi.org/10.1038/nmat2421
58 schema:sdDatePublished 2019-04-11T09:13
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N55676544c20e4288892e8b740c8d8678
61 schema:url https://www.nature.com/articles/nmat2421
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N10410994c5f1456695a8b30d0a88aa2e rdf:first sg:person.0730426274.23
66 rdf:rest N43c0633fd7f243879adf1da4d1dceb40
67 N1113538d07aa4ca4b173a99122fd701b schema:name readcube_id
68 schema:value 2c6e3983a4203326a8002002d835f3470956159a42a38d25242643d5f823ff52
69 rdf:type schema:PropertyValue
70 N2db85c76c6ac4cd8ad34bc04b29cdb12 schema:name Center for Functional Nanomaterials
71 rdf:type schema:Organization
72 N39f11aff44334392b0b6c5b2e13c89b6 schema:name Center for Functional Nanomaterials
73 rdf:type schema:Organization
74 N3d57eb67e84e49dc8f6e9f29050bafe1 schema:name Center for Functional Nanomaterials
75 rdf:type schema:Organization
76 N43c0633fd7f243879adf1da4d1dceb40 rdf:first sg:person.01247717455.96
77 rdf:rest N9c1515309d644c30956dc3c29c4a86fe
78 N48e1fab5ea1e49199185b9d668a9b486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Polymers
80 rdf:type schema:DefinedTerm
81 N55676544c20e4288892e8b740c8d8678 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N826f347ba2f445cf9950080ba9ad69af rdf:first sg:person.01046147116.64
84 rdf:rest rdf:nil
85 N8337317480db4ea9997c0ee7628113a8 schema:name pubmed_id
86 schema:value 19329992
87 rdf:type schema:PropertyValue
88 N8cfb78cc3ce04f0a899f8e57663d6fc3 schema:volumeNumber 8
89 rdf:type schema:PublicationVolume
90 N900590063d1f4b1f8d4aa6f3e5b17b9d schema:name dimensions_id
91 schema:value pub.1009326937
92 rdf:type schema:PropertyValue
93 N9c1515309d644c30956dc3c29c4a86fe rdf:first sg:person.01275345266.39
94 rdf:rest N826f347ba2f445cf9950080ba9ad69af
95 Na4741794e5da43d887c65f4375256364 schema:issueNumber 5
96 rdf:type schema:PublicationIssue
97 Na91f6a87a78f4de4943371bd533c81b4 schema:name nlm_unique_id
98 schema:value 101155473
99 rdf:type schema:PropertyValue
100 Nab3103fbe50b4d65990e3725ed13a8a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Nanoparticles
102 rdf:type schema:DefinedTerm
103 Nb86b9524234a4ce69c322b44cc032946 rdf:first sg:person.01004747223.26
104 rdf:rest N10410994c5f1456695a8b30d0a88aa2e
105 Nc1c092573e6c4126abd4b49a5f8929e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name DNA
107 rdf:type schema:DefinedTerm
108 Nc996cb2ee5db4c67b80bdb8d0c31e6bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Peptides
110 rdf:type schema:DefinedTerm
111 Ncce9a0494eea48c2ad93d3c201a203a3 schema:name doi
112 schema:value 10.1038/nmat2421
113 rdf:type schema:PropertyValue
114 Nd47fa21d40604b50b620764d1625e429 schema:name Center for Functional Nanomaterials
115 rdf:type schema:Organization
116 Nef05999c5836474099b1a62fb1ca4c3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Nucleic Acids
118 rdf:type schema:DefinedTerm
119 Nf2e5d7d554dd491c974f1a34519656d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Biomimetic Materials
121 rdf:type schema:DefinedTerm
122 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
123 schema:name Chemical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Chemistry (incl. Structural)
127 rdf:type schema:DefinedTerm
128 sg:journal.1031408 schema:issn 1476-1122
129 1476-4660
130 schema:name Nature Materials
131 rdf:type schema:Periodical
132 sg:person.01004747223.26 schema:affiliation N2db85c76c6ac4cd8ad34bc04b29cdb12
133 schema:familyName Maye
134 schema:givenName Mathew M.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004747223.26
136 rdf:type schema:Person
137 sg:person.01046147116.64 schema:affiliation N3d57eb67e84e49dc8f6e9f29050bafe1
138 schema:familyName Gang
139 schema:givenName Oleg
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046147116.64
141 rdf:type schema:Person
142 sg:person.01247717455.96 schema:affiliation N39f11aff44334392b0b6c5b2e13c89b6
143 schema:familyName Cuisinier
144 schema:givenName Marine
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247717455.96
146 rdf:type schema:Person
147 sg:person.01275345266.39 schema:affiliation https://www.grid.ac/institutes/grid.202665.5
148 schema:familyName van der Lelie
149 schema:givenName Daniel
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345266.39
151 rdf:type schema:Person
152 sg:person.0730426274.23 schema:affiliation Nd47fa21d40604b50b620764d1625e429
153 schema:familyName Nykypanchuk
154 schema:givenName Dmytro
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730426274.23
156 rdf:type schema:Person
157 sg:pub.10.1038/35020524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103352
158 https://doi.org/10.1038/35020524
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/382607a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717946
161 https://doi.org/10.1038/382607a0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
164 https://doi.org/10.1038/382609a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature01702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032578633
167 https://doi.org/10.1038/nature01702
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature06508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955834
170 https://doi.org/10.1038/nature06508
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nature06560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006800579
173 https://doi.org/10.1038/nature06560
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nbt1100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034742607
176 https://doi.org/10.1038/nbt1100
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nmat1869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707081
179 https://doi.org/10.1038/nmat1869
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nnano.2006.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045768730
182 https://doi.org/10.1038/nnano.2006.51
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/anie.200400651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050190252
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/anie.200463096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017598851
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/smll.200700357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038577648
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/0301-9322(74)90018-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045941135
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/ja00084a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055705408
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/ja00897a025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055755677
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/ja046747x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004328640
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/ja049578p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055838133
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/ja061980b schema:sameAs https://app.dimensions.ai/details/publication/pub.1052765286
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/ja070017i schema:sameAs https://app.dimensions.ai/details/publication/pub.1055844385
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/ja710710j schema:sameAs https://app.dimensions.ai/details/publication/pub.1020417419
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/ja711074n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055857562
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/nl0515495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051722133
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/nl052210l schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216537
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/nl061966x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007233409
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/nl071008a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019382444
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/nl073154m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217635
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/nl0802032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217696
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1039/b505099e schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605695
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.93.166108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024527902
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1133162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052149530
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.202665.5 schema:alternateName Brookhaven National Laboratory
227 schema:name Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...