The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03

AUTHORS

Kyle A. Ritter, Joseph W. Lyding

ABSTRACT

Graphene shows promise as a future material for nanoelectronics owing to its compatibility with industry-standard lithographic processing, electron mobilities up to 150 times greater than Si and a thermal conductivity twice that of diamond. The electronic structure of graphene nanoribbons (GNRs) and quantum dots (GQDs) has been predicted to depend sensitively on the crystallographic orientation of their edges; however, the influence of edge structure has not been verified experimentally. Here, we use tunnelling spectroscopy to show that the electronic structure of GNRs and GQDs with 2-20 nm lateral dimensions varies on the basis of the graphene edge lattice symmetry. Predominantly zigzag-edge GQDs with 7-8 nm average dimensions are metallic owing to the presence of zigzag edge states. GNRs with a higher fraction of zigzag edges exhibit a smaller energy gap than a predominantly armchair-edge ribbon of similar width, and the magnitudes of the measured GNR energy gaps agree with recent theoretical calculations. More... »

PAGES

235

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2378

DOI

http://dx.doi.org/10.1038/nmat2378

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010106459

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19219032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, Illinois 61801-2325, USA", 
            "Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-2920, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritter", 
        "givenName": "Kyle A.", 
        "id": "sg:person.0717347535.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717347535.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, Illinois 61801-2325, USA", 
            "Department of Electrical and Computer Engineering, University of Illinois, 1406 West Green Street, Urbana, Illinois 61801-2918, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyding", 
        "givenName": "Joseph W.", 
        "id": "sg:person.01304204642.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304204642.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1142882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000657280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0703337104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000747406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001062049", 
          "https://doi.org/10.1038/nature03563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001062049", 
          "https://doi.org/10.1038/nature03563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005726293", 
          "https://doi.org/10.1038/nnano.2008.149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934660", 
          "https://doi.org/10.1038/nature05180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/n-ssc.2007.4785580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008070711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008582960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.193406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009756209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.193406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009756209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.193406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009756209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009942791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009942791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl070613a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.216803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012453170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013286595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013286595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2007.06.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021016859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(00)00374-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027299395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.046404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029246541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.046404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029246541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.166803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038078420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.166803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038078420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.085421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039602445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.085421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039602445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040736915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/19/01/015704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044914418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080583r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049986580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080583r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049986580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0617033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052359345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1140047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057667581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1339260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1633014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057728076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2718515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057859991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2838354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057878063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.4561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.4561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1154663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.65.1920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063115781"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03", 
    "datePublishedReg": "2009-03-01", 
    "description": "Graphene shows promise as a future material for nanoelectronics owing to its compatibility with industry-standard lithographic processing, electron mobilities up to 150 times greater than Si and a thermal conductivity twice that of diamond. The electronic structure of graphene nanoribbons (GNRs) and quantum dots (GQDs) has been predicted to depend sensitively on the crystallographic orientation of their edges; however, the influence of edge structure has not been verified experimentally. Here, we use tunnelling spectroscopy to show that the electronic structure of GNRs and GQDs with 2-20 nm lateral dimensions varies on the basis of the graphene edge lattice symmetry. Predominantly zigzag-edge GQDs with 7-8 nm average dimensions are metallic owing to the presence of zigzag edge states. GNRs with a higher fraction of zigzag edges exhibit a smaller energy gap than a predominantly armchair-edge ribbon of similar width, and the magnitudes of the measured GNR energy gaps agree with recent theoretical calculations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat2378", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3046817", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons", 
    "pagination": "235", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3025fb3de563e4d37aece95fd5ea244837c27c00554e47a9a4f5f40b8cc465ff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19219032"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2378"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010106459"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2378", 
      "https://app.dimensions.ai/details/publication/pub.1010106459"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat2378"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2378'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2378'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2378'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2378'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2378 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne6fa977c21cf46d9b721f74405a1bc8d
4 schema:citation sg:pub.10.1038/nature03563
5 sg:pub.10.1038/nature05180
6 sg:pub.10.1038/nmat1849
7 sg:pub.10.1038/nnano.2008.149
8 https://doi.org/10.1016/j.physe.2007.06.020
9 https://doi.org/10.1016/s0169-4332(00)00374-3
10 https://doi.org/10.1021/nl0617033
11 https://doi.org/10.1021/nl070613a
12 https://doi.org/10.1021/nl080583r
13 https://doi.org/10.1063/1.1140047
14 https://doi.org/10.1063/1.1339260
15 https://doi.org/10.1063/1.1633014
16 https://doi.org/10.1063/1.2718515
17 https://doi.org/10.1063/1.2838354
18 https://doi.org/10.1073/pnas.0703337104
19 https://doi.org/10.1088/0957-4484/19/01/015704
20 https://doi.org/10.1103/physrev.71.717
21 https://doi.org/10.1103/physrevb.50.4561
22 https://doi.org/10.1103/physrevb.54.17954
23 https://doi.org/10.1103/physrevb.71.193406
24 https://doi.org/10.1103/physrevb.73.085421
25 https://doi.org/10.1103/physrevb.73.125415
26 https://doi.org/10.1103/physrevb.77.235411
27 https://doi.org/10.1103/physrevlett.101.046404
28 https://doi.org/10.1103/physrevlett.97.216803
29 https://doi.org/10.1103/physrevlett.98.206805
30 https://doi.org/10.1103/physrevlett.99.166803
31 https://doi.org/10.1109/n-ssc.2007.4785580
32 https://doi.org/10.1126/science.1125925
33 https://doi.org/10.1126/science.1142882
34 https://doi.org/10.1126/science.1150878
35 https://doi.org/10.1126/science.1154663
36 https://doi.org/10.1143/jpsj.65.1920
37 schema:datePublished 2009-03
38 schema:datePublishedReg 2009-03-01
39 schema:description Graphene shows promise as a future material for nanoelectronics owing to its compatibility with industry-standard lithographic processing, electron mobilities up to 150 times greater than Si and a thermal conductivity twice that of diamond. The electronic structure of graphene nanoribbons (GNRs) and quantum dots (GQDs) has been predicted to depend sensitively on the crystallographic orientation of their edges; however, the influence of edge structure has not been verified experimentally. Here, we use tunnelling spectroscopy to show that the electronic structure of GNRs and GQDs with 2-20 nm lateral dimensions varies on the basis of the graphene edge lattice symmetry. Predominantly zigzag-edge GQDs with 7-8 nm average dimensions are metallic owing to the presence of zigzag edge states. GNRs with a higher fraction of zigzag edges exhibit a smaller energy gap than a predominantly armchair-edge ribbon of similar width, and the magnitudes of the measured GNR energy gaps agree with recent theoretical calculations.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N3c3225a337694c70bb711b19dcf888be
44 Nbe060ff51da94fc1a5cb6d65dc9e7b36
45 sg:journal.1031408
46 schema:name The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons
47 schema:pagination 235
48 schema:productId N1e525f434f324c1dab16311d5ddcd013
49 N91120d5daaa4438ca4d5cf33e79a90c5
50 Nbba99aba1ee44a25842a0f69cd654d3a
51 Nceb8dc6d0a2647d5865fdfef6a8ec891
52 Ne3b31be52ef64049bd9924b9d41ff49b
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010106459
54 https://doi.org/10.1038/nmat2378
55 schema:sdDatePublished 2019-04-11T01:46
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N7fe38fce88374a0cb2e510645dc71979
58 schema:url https://www.nature.com/articles/nmat2378
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N1a244f6d6503411a9cc36c230df932e7 rdf:first sg:person.01304204642.15
63 rdf:rest rdf:nil
64 N1e525f434f324c1dab16311d5ddcd013 schema:name nlm_unique_id
65 schema:value 101155473
66 rdf:type schema:PropertyValue
67 N3c3225a337694c70bb711b19dcf888be schema:volumeNumber 8
68 rdf:type schema:PublicationVolume
69 N7fe38fce88374a0cb2e510645dc71979 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N91120d5daaa4438ca4d5cf33e79a90c5 schema:name doi
72 schema:value 10.1038/nmat2378
73 rdf:type schema:PropertyValue
74 Nbba99aba1ee44a25842a0f69cd654d3a schema:name dimensions_id
75 schema:value pub.1010106459
76 rdf:type schema:PropertyValue
77 Nbe060ff51da94fc1a5cb6d65dc9e7b36 schema:issueNumber 3
78 rdf:type schema:PublicationIssue
79 Nceb8dc6d0a2647d5865fdfef6a8ec891 schema:name readcube_id
80 schema:value 3025fb3de563e4d37aece95fd5ea244837c27c00554e47a9a4f5f40b8cc465ff
81 rdf:type schema:PropertyValue
82 Ne3b31be52ef64049bd9924b9d41ff49b schema:name pubmed_id
83 schema:value 19219032
84 rdf:type schema:PropertyValue
85 Ne6fa977c21cf46d9b721f74405a1bc8d rdf:first sg:person.0717347535.23
86 rdf:rest N1a244f6d6503411a9cc36c230df932e7
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
91 schema:name Materials Engineering
92 rdf:type schema:DefinedTerm
93 sg:grant.3046817 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat2378
94 rdf:type schema:MonetaryGrant
95 sg:journal.1031408 schema:issn 1476-1122
96 1476-4660
97 schema:name Nature Materials
98 rdf:type schema:Periodical
99 sg:person.01304204642.15 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
100 schema:familyName Lyding
101 schema:givenName Joseph W.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304204642.15
103 rdf:type schema:Person
104 sg:person.0717347535.23 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
105 schema:familyName Ritter
106 schema:givenName Kyle A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717347535.23
108 rdf:type schema:Person
109 sg:pub.10.1038/nature03563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001062049
110 https://doi.org/10.1038/nature03563
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nature05180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934660
113 https://doi.org/10.1038/nature05180
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
116 https://doi.org/10.1038/nmat1849
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nnano.2008.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005726293
119 https://doi.org/10.1038/nnano.2008.149
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.physe.2007.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021016859
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0169-4332(00)00374-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027299395
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/nl0617033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052359345
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/nl070613a schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175219
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/nl080583r schema:sameAs https://app.dimensions.ai/details/publication/pub.1049986580
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.1140047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057667581
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1339260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696579
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.1633014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057728076
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.2718515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057859991
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.2838354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057878063
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.0703337104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000747406
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0957-4484/19/01/015704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044914418
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrev.71.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453287
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.50.4561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573895
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.71.193406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009756209
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.73.085421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039602445
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.73.125415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009942791
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.77.235411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013286595
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.101.046404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029246541
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.98.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008582960
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.99.166803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038078420
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/n-ssc.2007.4785580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008070711
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/science.1142882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000657280
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.1154663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457512
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1143/jpsj.65.1920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063115781
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
180 schema:name Beckman Institute for Advanced Science and Technology, University of Illinois, 405 North Mathews Avenue, Urbana, Illinois 61801-2325, USA
181 Department of Electrical and Computer Engineering, University of Illinois, 1406 West Green Street, Urbana, Illinois 61801-2918, USA
182 Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801-2920, USA
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...