Complex thermoelectric materials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-02

AUTHORS

G. Jeffrey Snyder, Eric S. Toberer

ABSTRACT

Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity. More... »

PAGES

105-114

References to SciGraph publications

  • 2008-01. Enhanced thermoelectric performance of rough silicon nanowires in NATURE
  • 2001-04. Bi–Sb Solid Solutions: Potential Materials for High-Efficiency Thermoelectric Cooling to below 180 K in INORGANIC MATERIALS
  • 1981-04. Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys in NATURE
  • 2003-05. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 in NATURE
  • 1958-03. Thermoelectric Properties of Bismuth Telluride and its Alloys in NATURE
  • 2006-03. Recent Developments in Bulk Thermoelectric Materials in MRS BULLETIN
  • 2004-04. Electrical and Thermal Properties of the GaSb–FeGa1.3 Eutectic in INORGANIC MATERIALS
  • 2008-01. Silicon nanowires as efficient thermoelectric materials in NATURE
  • 2006-03. Complex Oxide Materials for Potential Thermoelectric Applications in MRS BULLETIN
  • 2004-11. Thermoelectric Properties of PbBi4Te7-Based Anion-Substituted Layered Solid Solutions in INORGANIC MATERIALS
  • 2000-02. Thermoelectric properties of (Bi,Pb)–Sr–Co–O oxide in JOURNAL OF MATERIALS RESEARCH
  • 2002-07. High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation in JOURNAL OF MATERIALS SCIENCE
  • 1983-05. Thermally activated crystallization of (GeSe2)70 (Sb2Te320(GeTe)10 alloy glass: morphological and calorimetric study in JOURNAL OF MATERIALS SCIENCE
  • 2004-05. Crystal Structures and Thermoelectric Properties of Layered Compounds in the ATe–Bi2Te3(A = Ge, Sn, Pb) Systems in INORGANIC MATERIALS
  • 1995-01. α-in σ plot as a thermoelectric material performance indicator in JOURNAL OF MATERIALS SCIENCE LETTERS
  • 1998-01. Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials in MRS BULLETIN
  • Journal

    TITLE

    Nature Materials

    ISSUE

    2

    VOLUME

    7

    Related Patents

  • Energy Harvesting Unit, Vehicle Component Provided Therewith And Energy Harvesting Method
  • Flexible And Conformable Thermoelectric Compositions
  • Ultra-Long Silicon Nanostructures, And Methods Of Forming And Transferring The Same
  • Thermoelectric Material And Device Incorporating Same
  • Nanofluid Contact Potential Difference Battery
  • Vibration Generator And Stacked-Structure Generator
  • Cvd Nanocrystalline Silicon Thermoelectric Material
  • Nanostructured Thermolectric Elements And Methods Of Making The Same
  • Rechargeable Polyacrylamide Based Polymer Electrolyte Zinc-Ion Batteries
  • Arrays Of Long Nanostructures In Semiconductor Materials And Methods Thereof
  • Thermoelectric Devices
  • Affecting The Thermoelectric Figure Of Merit (Zt) And The Power Factor By High Pressure, High Temperature Sintering
  • Thermoelectric Device Having A Plurality Of Sealing Materials
  • Apparatus And Method For Enhancing Figure Of Merit In Composite Thermoelectric Materials With Aerogel
  • Thermoelectric Conversion Module
  • Methods Of Preparing Single-Walled Carbon Nanotube Networks
  • Affecting The Thermoelectric Figure Of Merit (Zt) And The Power Factor By High Pressure, High Temperature Sintering
  • Thermoelectric Device Having A Polymeric Coating
  • Thermoelectric Devices With Interface Materials And Methods Of Manufacturing The Same
  • Thermoelectric Materials, Devices And Methods Of Production Thereof
  • Conductive Yarn-Based Nickel-Zinc Textile Batteries
  • Method Of Fabricating Nano-Structures With Engineered Nano-Scale Electrospray Depositions
  • Arrays Of Long Nanostructures In Semiconductor Materials And Methods Thereof
  • Nanostructures Having High Performance Thermoelectric Properties
  • Electrochemical Systems Configured To Harvest Heat Energy
  • Thermoelectric Device Having Circuitry With Structural Rigidity
  • Nano-Scale Energy Conversion Device
  • Thermoelectric Devices
  • Rechargeable Zinc-Ion Batteries Having Flexible Shape Memory
  • Methods To Synthesize Single Source Precursors And Methods To Deposit Nanowire Based Thin Films For High Efficiency Thermoelectric Devices
  • Methods Of Preparing Single-Walled Carbon Nanotube Networks
  • Nano-Scale Energy Conversion Device
  • Thermoelectric Materials And Devices Comprising Graphene
  • Bulk Nano-Ribbon And/Or Nano-Porous Structures For Thermoelectric Devices And Methods For Making The Same
  • Nanofluid Contact Potential Difference Battery
  • Optically And Thermally Responsive Nanohybrid Materials
  • Thermoelectric Molding And Process For Its Preparation
  • Low Thermal Conductivity Matrices With Embedded Nanostructures And Methods Thereof
  • Method Of Manufacturing And Operating Nano-Scale Energy Conversion Device
  • Molecular Thermoelectric Device
  • Phononic Structures And Related Devices And Methods
  • Doped Pnictogen Chalcogenide Nanoplates, Methods Of Making, And Assemblies And Films Thereof
  • Apparatus And Method For Enhancing Figure Of Merit In Composite Thermoelectric Materials With Aerogel
  • Integrated Circuit For Low-Voltage Thermoelectric Energy Harvesting With Self-Start
  • Electrospray Pinning Of Nanograined Depositions
  • Triboelectric Nanogenerator For Harvesting Energy From Water
  • Single-Nozzle Apparatus For Engineered Nano-Scale Electrospray Depositions
  • Cvd Nanocrystalline Silicon As Thermoelectric Material
  • Thermoelectric Conversion Material, Thermoelectric Conversion Element And Thermoelectric Conversion Module
  • Ultra Low-Voltage Circuits
  • Glass Interposer With Embedded Thermoelectric Devices
  • Thermoelectric Devices With Interface Materials And Methods Of Manufacturing The Same
  • Apparatus Including Thermal Energy Harvesting Thermionic Device Integrated With Electronics, And Related Systems And Methods
  • Method And Structure For Thermoelectric Unicouple Assembly
  • Gel Polymer Electrolytes Comprising Electrolyte Additive
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat2090

    DOI

    http://dx.doi.org/10.1038/nmat2090

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014989328

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18219332


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Materials Science, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Materials Science, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Snyder", 
            "givenName": "G. Jeffrey", 
            "id": "sg:person.01271065004.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271065004.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA", 
              "id": "http://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Materials Science, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toberer", 
            "givenName": "Eric S.", 
            "id": "sg:person.014550062067.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550062067.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1557/s0883769400031419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067962412", 
              "https://doi.org/10.1557/s0883769400031419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/mrs2006.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067969126", 
              "https://doi.org/10.1557/mrs2006.45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028805599", 
              "https://doi.org/10.1038/nature01639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/mrs2006.46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067969127", 
              "https://doi.org/10.1557/mrs2006.46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026141181", 
              "https://doi.org/10.1038/nature06381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01111958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028604695", 
              "https://doi.org/10.1007/bf01111958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00586157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030046197", 
              "https://doi.org/10.1007/bf00586157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:inma.0000027590.43038.a8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043409220", 
              "https://doi.org/10.1023/b:inma.0000027590.43038.a8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:inma.0000023949.61917.de", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002945728", 
              "https://doi.org/10.1023/b:inma.0000023949.61917.de"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:inma.0000048211.53027.e7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029030984", 
              "https://doi.org/10.1023/b:inma.0000048211.53027.e7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033493248", 
              "https://doi.org/10.1038/nature06458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/jmr.2000.0060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044899290", 
              "https://doi.org/10.1557/jmr.2000.0060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017563308160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034360210", 
              "https://doi.org/10.1023/a:1017563308160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016092224833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043143968", 
              "https://doi.org/10.1023/a:1016092224833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/181834a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031974002", 
              "https://doi.org/10.1038/181834a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/290765a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019289148", 
              "https://doi.org/10.1038/290765a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-02", 
        "datePublishedReg": "2008-02-01", 
        "description": "Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmat2090", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "thermoelectric materials", 
          "complex thermoelectric materials", 
          "solid-state Peltier coolers", 
          "high thermoelectric efficiency", 
          "sustainable energy solutions", 
          "waste heat", 
          "thermal conductivity", 
          "Peltier cooler", 
          "thermoelectric efficiency", 
          "characterization techniques", 
          "nanoscale materials", 
          "energy solutions", 
          "materials", 
          "electricity", 
          "conductivity", 
          "heat", 
          "cooler", 
          "material traits", 
          "conflicting combination", 
          "thermopower", 
          "efficiency", 
          "solution", 
          "field", 
          "technique", 
          "recent advances", 
          "new era", 
          "combination", 
          "important role", 
          "challenges", 
          "advances", 
          "strategies", 
          "development", 
          "synthesis", 
          "present", 
          "role", 
          "era", 
          "Modern Synthesis", 
          "traits"
        ], 
        "name": "Complex thermoelectric materials", 
        "pagination": "105-114", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014989328"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat2090"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18219332"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat2090", 
          "https://app.dimensions.ai/details/publication/pub.1014989328"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_466.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmat2090"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2090'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2090'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2090'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2090'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      80 URIs      56 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat2090 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nfba7fdc2a9ea410e951386eb1ec0af25
    4 schema:citation sg:pub.10.1007/bf00586157
    5 sg:pub.10.1007/bf01111958
    6 sg:pub.10.1023/a:1016092224833
    7 sg:pub.10.1023/a:1017563308160
    8 sg:pub.10.1023/b:inma.0000023949.61917.de
    9 sg:pub.10.1023/b:inma.0000027590.43038.a8
    10 sg:pub.10.1023/b:inma.0000048211.53027.e7
    11 sg:pub.10.1038/181834a0
    12 sg:pub.10.1038/290765a0
    13 sg:pub.10.1038/nature01639
    14 sg:pub.10.1038/nature06381
    15 sg:pub.10.1038/nature06458
    16 sg:pub.10.1557/jmr.2000.0060
    17 sg:pub.10.1557/mrs2006.45
    18 sg:pub.10.1557/mrs2006.46
    19 sg:pub.10.1557/s0883769400031419
    20 schema:datePublished 2008-02
    21 schema:datePublishedReg 2008-02-01
    22 schema:description Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N2a7664a1f8a44506a83c3e20b6b6e8b1
    26 Ndb0c34cef461401f8c918586d024e6c8
    27 sg:journal.1031408
    28 schema:keywords Modern Synthesis
    29 Peltier cooler
    30 advances
    31 challenges
    32 characterization techniques
    33 combination
    34 complex thermoelectric materials
    35 conductivity
    36 conflicting combination
    37 cooler
    38 development
    39 efficiency
    40 electricity
    41 energy solutions
    42 era
    43 field
    44 heat
    45 high thermoelectric efficiency
    46 important role
    47 material traits
    48 materials
    49 nanoscale materials
    50 new era
    51 present
    52 recent advances
    53 role
    54 solid-state Peltier coolers
    55 solution
    56 strategies
    57 sustainable energy solutions
    58 synthesis
    59 technique
    60 thermal conductivity
    61 thermoelectric efficiency
    62 thermoelectric materials
    63 thermopower
    64 traits
    65 waste heat
    66 schema:name Complex thermoelectric materials
    67 schema:pagination 105-114
    68 schema:productId N90b69ef72be94bbea99ff7bba073e2f5
    69 Nadba2e5db28641b2a077fd8fe7003382
    70 Nb51dcb14d9b0458da4e9123df33dd7c2
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014989328
    72 https://doi.org/10.1038/nmat2090
    73 schema:sdDatePublished 2022-11-24T20:53
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher Nf084a52b7a3c47a28a7c06bc424936bd
    76 schema:url https://doi.org/10.1038/nmat2090
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N2a7664a1f8a44506a83c3e20b6b6e8b1 schema:issueNumber 2
    81 rdf:type schema:PublicationIssue
    82 N90b69ef72be94bbea99ff7bba073e2f5 schema:name dimensions_id
    83 schema:value pub.1014989328
    84 rdf:type schema:PropertyValue
    85 N92abb41c8d1d478aaedef57c7416fc19 rdf:first sg:person.014550062067.74
    86 rdf:rest rdf:nil
    87 Nadba2e5db28641b2a077fd8fe7003382 schema:name pubmed_id
    88 schema:value 18219332
    89 rdf:type schema:PropertyValue
    90 Nb51dcb14d9b0458da4e9123df33dd7c2 schema:name doi
    91 schema:value 10.1038/nmat2090
    92 rdf:type schema:PropertyValue
    93 Ndb0c34cef461401f8c918586d024e6c8 schema:volumeNumber 7
    94 rdf:type schema:PublicationVolume
    95 Nf084a52b7a3c47a28a7c06bc424936bd schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Nfba7fdc2a9ea410e951386eb1ec0af25 rdf:first sg:person.01271065004.62
    98 rdf:rest N92abb41c8d1d478aaedef57c7416fc19
    99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Engineering
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Materials Engineering
    104 rdf:type schema:DefinedTerm
    105 sg:journal.1031408 schema:issn 1476-1122
    106 1476-4660
    107 schema:name Nature Materials
    108 schema:publisher Springer Nature
    109 rdf:type schema:Periodical
    110 sg:person.01271065004.62 schema:affiliation grid-institutes:grid.20861.3d
    111 schema:familyName Snyder
    112 schema:givenName G. Jeffrey
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271065004.62
    114 rdf:type schema:Person
    115 sg:person.014550062067.74 schema:affiliation grid-institutes:grid.20861.3d
    116 schema:familyName Toberer
    117 schema:givenName Eric S.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014550062067.74
    119 rdf:type schema:Person
    120 sg:pub.10.1007/bf00586157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030046197
    121 https://doi.org/10.1007/bf00586157
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01111958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028604695
    124 https://doi.org/10.1007/bf01111958
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1023/a:1016092224833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043143968
    127 https://doi.org/10.1023/a:1016092224833
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1023/a:1017563308160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034360210
    130 https://doi.org/10.1023/a:1017563308160
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1023/b:inma.0000023949.61917.de schema:sameAs https://app.dimensions.ai/details/publication/pub.1002945728
    133 https://doi.org/10.1023/b:inma.0000023949.61917.de
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1023/b:inma.0000027590.43038.a8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043409220
    136 https://doi.org/10.1023/b:inma.0000027590.43038.a8
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1023/b:inma.0000048211.53027.e7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029030984
    139 https://doi.org/10.1023/b:inma.0000048211.53027.e7
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1038/181834a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031974002
    142 https://doi.org/10.1038/181834a0
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/290765a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019289148
    145 https://doi.org/10.1038/290765a0
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/nature01639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028805599
    148 https://doi.org/10.1038/nature01639
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/nature06381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026141181
    151 https://doi.org/10.1038/nature06381
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/nature06458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033493248
    154 https://doi.org/10.1038/nature06458
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1557/jmr.2000.0060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044899290
    157 https://doi.org/10.1557/jmr.2000.0060
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1557/mrs2006.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969126
    160 https://doi.org/10.1557/mrs2006.45
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1557/mrs2006.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969127
    163 https://doi.org/10.1557/mrs2006.46
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1557/s0883769400031419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067962412
    166 https://doi.org/10.1557/s0883769400031419
    167 rdf:type schema:CreativeWork
    168 grid-institutes:grid.20861.3d schema:alternateName Materials Science, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA
    169 schema:name Materials Science, California Institute of Technology, 1200 East California Boulevard, 91125, Pasadena, California, USA
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...