Nanoelectronics from the bottom up View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-11

AUTHORS

Wei Lu, Charles M Lieber

ABSTRACT

Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core-shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed. More... »

PAGES

841-850

Journal

TITLE

Nature Materials

ISSUE

11

VOLUME

6

Related Patents

  • Nanoscale Wire-Based Memory Devices
  • Low Temperature P+ Silicon Junction Material For A Non-Volatile Memory Device
  • Memory Devices, Methods Of Storing And Reading Data, Smm Junctions, And Methods Of Preparing Alumina Substrates
  • Resistive Ram With Preferental Filament Formation Region And Methods
  • Disturb-Resistant Non-Volatile Memory Device And Method
  • Resistive Memory Cell With Solid State Diode
  • Filamentary Based Non-Volatile Resistive Memory Device And Method
  • Conductive Path In Switching Material In A Resistive Random Access Memory Device And Control
  • Methods For The Production Of Nanoscale Heterostructures
  • Stackable Non-Volatile Resistive Switching Memory Devices
  • Field Programmable Gate Array Utilizing Two-Terminal Non-Volatile Memory
  • Reduced Diffusion In Metal Electrode For Two-Terminal Memory
  • High Operating Speed Resistive Random Access Memory
  • Resistive Random Access Memory With Non-Linear Current-Voltage Relationship
  • On/Off Ratio For Non-Volatile Memory Device And Method
  • Conductive Path In Switching Material In A Resistive Random Access Memory Device And Control
  • Silver Interconnects For Stacked Non-Volatile Memory Device And Method
  • Multiple Copolymer Systems As Templates For Block Copolymer Nanolithography
  • Rectified Switching Of Two-Terminal Memory Via Real Time Filament Formation
  • Three-Dimensional Oblique Two-Terminal Memory With Enhanced Electric Field
  • Nanoscale Wire-Based Memory Devices
  • Guided Path For Forming A Conductive Filament In Rram
  • Hetero Resistive Switching Material Layer In Rram Device And Method
  • P+ Polysilicon Material On Aluminum For Non-Volatile Memory Device And Method
  • Sub-Oxide Interface Layer For Two-Terminal Memory
  • Switching Device Having A Non-Linear Element
  • Switching Device Having A Non-Linear Element
  • Resistive Random Access Memory Equalization And Sensing
  • Stackable Non-Volatile Resistive Switching Memory Device
  • Thin Film Transistor Steering Element For A Non-Volatile Memory Device
  • Method For Silver Deposition For A Non-Volatile Memory Device
  • Line And Space Architecture For A Non-Volatile Memory Device
  • Nanoscale Wire-Based Memory Devices
  • Electrode Structure For A Non-Volatile Memory Device And Method
  • Resistive Memory Using Sige Material
  • On/Off Ratio For Nonvolatile Memory Device And Method
  • Resistive Switching Device Structure With Improved Data Retention For Non-Volatile Memory Device And Method
  • Guided Path For Forming A Conductive Filament In Rram
  • Three-Dimensional Two-Terminal Memory With Enhanced Electric Field And Segmented Interconnects
  • Noble Metal / Non-Noble Metal Electrode For Rram Applications
  • Pillar Structure For Memory Device And Method
  • Selective Removal Method And Structure Of Silver In Resistive Switching Device For A Non-Volatile Memory Device
  • Filamentary Based Non-Volatile Resistive Memory Device And Method
  • Stackable Non-Volatile Resistive Switching Memory Device And Method Of Fabricating The Same
  • Three-Dimensional Two-Terminal Memory With Enhanced Electric Field And Segmented Interconnects
  • Method And Structure Of Monolithically Integrated Ic And Resistive Memory Using Ic Foundry-Compatible Processes
  • Field Emission Device And Method Of Fabricating The Same
  • Non-Volatile Memory With Overwrite Capability And Low Write Amplification
  • Memory Array Architecture With Two-Terminal Memory Cells
  • Low Temperature Fabrication Method For A Three-Dimensional Memory Device And Structure
  • Field Programmable Gate Array Utilizing Two-Terminal Non-Volatile Memory
  • Interface Control For Improved Switching In Rram
  • Monolithically Integrated Resistive Memory Using Integrated-Circuit Foundry Compatible Processes
  • Low Temperature P+ Polycrystalline Silicon Material For Non-Volatile Memory Device
  • Device Switching Using Layered Device Structure
  • Interface Control For Improved Switching In Rram
  • Resistor Structure For A Non-Volatile Memory Device And Method
  • Resistive Memory Device And Fabrication Methods
  • Methods For Fabricating Resistive Memory Device Switching Material Using Ion Implantation
  • Resistive Memory Device And Fabrication Methods
  • Scalable Rram Device Architecture For A Non-Volatile Memory Device And Method
  • Disturb-Resistant Non-Volatile Memory Device Using Via-Fill And Etchback Technique
  • Device Switching Using Layered Device Structure
  • Hetero-Switching Layer In A Rram Device And Method
  • Capacitive Discharge Programming For Two-Terminal Memory Cells
  • Resistive Memory Using Sige Material
  • Modeling Technique For Resistive Random Access Memory (Rram) Cells
  • Two Terminal Resistive Switching Device Structure And Method Of Fabricating
  • Pillar Structure For Memory Device And Method
  • Method For Forming Stackable Non-Volatile Resistive Switching Memory Devices
  • Seed Layer For A P+ Silicon Germanium Material For A Non-Volatile Memory Device And Method
  • Resistor Structure For A Non-Volatile Memory Device And Method
  • Field Programmable Gate Array Utilizing Two-Terminal Non-Volatile Memory
  • Method For Silver Deposition For A Non-Volatile Memory Device
  • Vertical Diodes For Non-Volatile Memory Device
  • Disturb-Resistant Non-Volatile Memory Device Using Via-Fill And Etchback Technique
  • Hetero-Switching Layer In A Rram Device And Method
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat2028

    DOI

    http://dx.doi.org/10.1038/nmat2028

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036680225

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17972939


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Electrophysiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Semiconductors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transistors, Electronic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA. wluee@eecs.umich.edu"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Wei", 
            "id": "sg:person.01115537703.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115537703.03"
            ], 
            "type": "Person"
          }, 
          {
            "familyName": "Lieber", 
            "givenName": "Charles M", 
            "id": "sg:person.01265745444.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265745444.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0957-4484/14/4/311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000008791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl063056l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000606072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl063056l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000606072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-6090(03)00117-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000751229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0040-6090(03)00117-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000751229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00339-004-3149-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006533344", 
              "https://doi.org/10.1007/s00339-004-3149-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/4/035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006688907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/4/035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006688907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/16/1/028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007222588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.278.5336.252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009663792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207219208925733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011066753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0345062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011220837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0345062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011220837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/16/9/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012456899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/16/9/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012456899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0038-1101(99)00182-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012626917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012684034", 
              "https://doi.org/10.1038/nmat1350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012684034", 
              "https://doi.org/10.1038/nmat1350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016486670", 
              "https://doi.org/10.1038/nmat2023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.289.5482.1172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018947658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1060294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023306160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034064960", 
              "https://doi.org/10.1038/nmat2009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/18/3/035204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034147320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl049659j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034682813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl049659j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034682813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5426.391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039329548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/12/2/303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041714625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.291.5504.630", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045299172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046447687", 
              "https://doi.org/10.1038/nature05462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046447687", 
              "https://doi.org/10.1038/nature05462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/16/6/045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049367594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0625071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055842183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0625071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055842183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja065938s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055843201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja065938s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055843201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja992936h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055872825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025532n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl025532n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl035117a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl035117a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl061102b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl061102b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1289650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057692158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1377042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057700554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1823026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057824819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2397558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057854300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.13611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060569925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.13611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060569925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060821608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/5.915374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061180294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2003.818327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2002.1005429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2002.1005429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2002.1005429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2003.808508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnano.2003.816658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061711779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1066192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062445575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1081940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062447877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1090899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1095520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1106195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062451299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1118798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062452674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1122797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062453398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.272.5258.85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062552676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.280.5370.1716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062561405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.289.5476.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062570184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.291.5505.851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062572880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs2003.144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067968279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs2004.232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067968603"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-11", 
        "datePublishedReg": "2007-11-01", 
        "description": "Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core-shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat2028", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2994773", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Nanoelectronics from the bottom up", 
        "pagination": "841-850", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aebb2ee128b6c76e086ade16a9094b17186f54e7962fb09a3d93454948e7a8d1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17972939"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat2028"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036680225"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat2028", 
          "https://app.dimensions.ai/details/publication/pub.1036680225"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmat2028"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2028'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2028'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2028'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2028'


     

    This table displays all metadata directly associated to this object as RDF triples.

    261 TRIPLES      21 PREDICATES      87 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat2028 schema:about N3814a3ec1f3c4ba98d1ef2becc8786c7
    2 N3af3b84d59d748de9dec962ced15c415
    3 N6f1c4e2a3737480ba613a4144ef1cfe6
    4 Ne3935f95bf7a41a7b81c5c42ebbd60cd
    5 Nf807b0ea8a2a4f159d2b1e3a4b35594f
    6 anzsrc-for:10
    7 anzsrc-for:1007
    8 schema:author N3a3a5e7233f84de1b7c83b43218f394e
    9 schema:citation sg:pub.10.1007/s00339-004-3149-1
    10 sg:pub.10.1038/nature05462
    11 sg:pub.10.1038/nmat1350
    12 sg:pub.10.1038/nmat2009
    13 sg:pub.10.1038/nmat2023
    14 https://doi.org/10.1016/s0038-1101(99)00182-3
    15 https://doi.org/10.1016/s0040-6090(03)00117-2
    16 https://doi.org/10.1021/ja0625071
    17 https://doi.org/10.1021/ja065938s
    18 https://doi.org/10.1021/ja992936h
    19 https://doi.org/10.1021/nl025532n
    20 https://doi.org/10.1021/nl0345062
    21 https://doi.org/10.1021/nl035117a
    22 https://doi.org/10.1021/nl049659j
    23 https://doi.org/10.1021/nl061102b
    24 https://doi.org/10.1021/nl063056l
    25 https://doi.org/10.1063/1.1289650
    26 https://doi.org/10.1063/1.1377042
    27 https://doi.org/10.1063/1.1823026
    28 https://doi.org/10.1063/1.2397558
    29 https://doi.org/10.1080/00207219208925733
    30 https://doi.org/10.1088/0957-4484/12/2/303
    31 https://doi.org/10.1088/0957-4484/14/4/311
    32 https://doi.org/10.1088/0957-4484/16/1/028
    33 https://doi.org/10.1088/0957-4484/16/6/045
    34 https://doi.org/10.1088/0957-4484/16/9/001
    35 https://doi.org/10.1088/0957-4484/17/4/035
    36 https://doi.org/10.1088/0957-4484/18/3/035204
    37 https://doi.org/10.1103/physrevb.49.13611
    38 https://doi.org/10.1103/physrevlett.84.979
    39 https://doi.org/10.1109/5.915374
    40 https://doi.org/10.1109/jproc.2003.818327
    41 https://doi.org/10.1109/tnano.2002.1005429
    42 https://doi.org/10.1109/tnano.2003.808508
    43 https://doi.org/10.1109/tnano.2003.816658
    44 https://doi.org/10.1126/science.1060294
    45 https://doi.org/10.1126/science.1066192
    46 https://doi.org/10.1126/science.1081940
    47 https://doi.org/10.1126/science.1090899
    48 https://doi.org/10.1126/science.1095520
    49 https://doi.org/10.1126/science.1106195
    50 https://doi.org/10.1126/science.1118798
    51 https://doi.org/10.1126/science.1122797
    52 https://doi.org/10.1126/science.272.5258.85
    53 https://doi.org/10.1126/science.278.5336.252
    54 https://doi.org/10.1126/science.280.5370.1716
    55 https://doi.org/10.1126/science.285.5426.391
    56 https://doi.org/10.1126/science.289.5476.94
    57 https://doi.org/10.1126/science.289.5482.1172
    58 https://doi.org/10.1126/science.291.5504.630
    59 https://doi.org/10.1126/science.291.5505.851
    60 https://doi.org/10.1557/mrs2003.144
    61 https://doi.org/10.1557/mrs2004.232
    62 schema:datePublished 2007-11
    63 schema:datePublishedReg 2007-11-01
    64 schema:description Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core-shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed.
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree true
    68 schema:isPartOf N1d13818429a1486491ab3c11c671cab4
    69 N3ddf3c95fcf64a4a8c80925e1ba068dd
    70 sg:journal.1031408
    71 schema:name Nanoelectronics from the bottom up
    72 schema:pagination 841-850
    73 schema:productId N5adda01f684a44ebb3dad4b0d61f8a59
    74 N763ad4393f204db59de2622bd9cbca2a
    75 Naab555881c454441b6078f1275fe7473
    76 Nb1b7a60915944b2fbb1f77dcce8b39ea
    77 Nc27313a168fc481781576d1631f52306
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036680225
    79 https://doi.org/10.1038/nmat2028
    80 schema:sdDatePublished 2019-04-10T16:29
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N08c98a78b3984bd68be1d9349056c863
    83 schema:url http://www.nature.com/articles/nmat2028
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N08c98a78b3984bd68be1d9349056c863 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N0d8b37909a47448ba4452f75dc05b9ca rdf:first sg:person.01265745444.44
    90 rdf:rest rdf:nil
    91 N1d13818429a1486491ab3c11c671cab4 schema:volumeNumber 6
    92 rdf:type schema:PublicationVolume
    93 N3814a3ec1f3c4ba98d1ef2becc8786c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Animals
    95 rdf:type schema:DefinedTerm
    96 N3a3a5e7233f84de1b7c83b43218f394e rdf:first sg:person.01115537703.03
    97 rdf:rest N0d8b37909a47448ba4452f75dc05b9ca
    98 N3af3b84d59d748de9dec962ced15c415 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Electrophysiology
    100 rdf:type schema:DefinedTerm
    101 N3ddf3c95fcf64a4a8c80925e1ba068dd schema:issueNumber 11
    102 rdf:type schema:PublicationIssue
    103 N5adda01f684a44ebb3dad4b0d61f8a59 schema:name doi
    104 schema:value 10.1038/nmat2028
    105 rdf:type schema:PropertyValue
    106 N6f1c4e2a3737480ba613a4144ef1cfe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Nanostructures
    108 rdf:type schema:DefinedTerm
    109 N763ad4393f204db59de2622bd9cbca2a schema:name readcube_id
    110 schema:value aebb2ee128b6c76e086ade16a9094b17186f54e7962fb09a3d93454948e7a8d1
    111 rdf:type schema:PropertyValue
    112 Naab555881c454441b6078f1275fe7473 schema:name dimensions_id
    113 schema:value pub.1036680225
    114 rdf:type schema:PropertyValue
    115 Nb1b7a60915944b2fbb1f77dcce8b39ea schema:name nlm_unique_id
    116 schema:value 101155473
    117 rdf:type schema:PropertyValue
    118 Nc27313a168fc481781576d1631f52306 schema:name pubmed_id
    119 schema:value 17972939
    120 rdf:type schema:PropertyValue
    121 Ne3935f95bf7a41a7b81c5c42ebbd60cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Transistors, Electronic
    123 rdf:type schema:DefinedTerm
    124 Nf807b0ea8a2a4f159d2b1e3a4b35594f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Semiconductors
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Technology
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Nanotechnology
    132 rdf:type schema:DefinedTerm
    133 sg:grant.2994773 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat2028
    134 rdf:type schema:MonetaryGrant
    135 sg:journal.1031408 schema:issn 1476-1122
    136 1476-4660
    137 schema:name Nature Materials
    138 rdf:type schema:Periodical
    139 sg:person.01115537703.03 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    140 schema:familyName Lu
    141 schema:givenName Wei
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115537703.03
    143 rdf:type schema:Person
    144 sg:person.01265745444.44 schema:familyName Lieber
    145 schema:givenName Charles M
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265745444.44
    147 rdf:type schema:Person
    148 sg:pub.10.1007/s00339-004-3149-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006533344
    149 https://doi.org/10.1007/s00339-004-3149-1
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nature05462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046447687
    152 https://doi.org/10.1038/nature05462
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nmat1350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012684034
    155 https://doi.org/10.1038/nmat1350
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nmat2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034064960
    158 https://doi.org/10.1038/nmat2009
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nmat2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016486670
    161 https://doi.org/10.1038/nmat2023
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/s0038-1101(99)00182-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012626917
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/s0040-6090(03)00117-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000751229
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1021/ja0625071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055842183
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1021/ja065938s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055843201
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1021/ja992936h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055872825
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1021/nl025532n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215274
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1021/nl0345062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011220837
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1021/nl035117a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215777
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/nl049659j schema:sameAs https://app.dimensions.ai/details/publication/pub.1034682813
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/nl061102b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216760
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1021/nl063056l schema:sameAs https://app.dimensions.ai/details/publication/pub.1000606072
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1063/1.1289650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057692158
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1063/1.1377042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700554
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1063/1.1823026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057824819
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1063/1.2397558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057854300
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1080/00207219208925733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011066753
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1088/0957-4484/12/2/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041714625
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1088/0957-4484/14/4/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000008791
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1088/0957-4484/16/1/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007222588
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1088/0957-4484/16/6/045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049367594
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1088/0957-4484/16/9/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012456899
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1088/0957-4484/17/4/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006688907
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1088/0957-4484/18/3/035204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034147320
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1103/physrevb.49.13611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569925
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1103/physrevlett.84.979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821608
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/5.915374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180294
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1109/jproc.2003.818327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296182
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1109/tnano.2002.1005429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711735
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1109/tnano.2003.808508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711765
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1109/tnano.2003.816658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061711779
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1126/science.1060294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023306160
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1126/science.1066192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445575
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1126/science.1081940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447877
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1126/science.1090899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449046
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1126/science.1095520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449454
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1126/science.1106195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451299
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1126/science.1118798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452674
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1126/science.1122797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453398
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1126/science.272.5258.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552676
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1126/science.278.5336.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009663792
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1126/science.280.5370.1716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561405
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1126/science.285.5426.391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039329548
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1126/science.289.5476.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062570184
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1126/science.289.5482.1172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947658
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.291.5504.630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045299172
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1126/science.291.5505.851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572880
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1557/mrs2003.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968279
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1557/mrs2004.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067968603
    258 rdf:type schema:CreativeWork
    259 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
    260 schema:name Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA. wluee@eecs.umich.edu
    261 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...