Intrinsic ripples in graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-11

AUTHORS

A. Fasolino, J. H. Los, M. I. Katsnelson

ABSTRACT

The stability of two-dimensional (2D) layers and membranes is the subject of a long-standing theoretical debate. According to the so-called Mermin-Wagner theorem, long-wavelength fluctuations destroy the long-range order of 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes meaning that a 2D membrane can exist but will exhibit strong height fluctuations. The discovery of graphene, the first truly 2D crystal, and the recent experimental observation of ripples in suspended graphene make these issues especially important. Besides the academic interest, understanding the mechanisms of the stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest owing to its unusual Dirac spectrum and electronic properties. We address the nature of these height fluctuations by means of atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear owing to thermal fluctuations with a size distribution peaked around 80 A which is compatible with experimental findings (50-100 A). This unexpected result might be due to the multiplicity of chemical bonding in carbon. More... »

PAGES

858-861

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2011

DOI

http://dx.doi.org/10.1038/nmat2011

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009015153

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17891144


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fasolino", 
        "givenName": "A.", 
        "id": "sg:person.01057101356.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057101356.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Los", 
        "givenName": "J. H.", 
        "id": "sg:person.01072035572.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072035572.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsnelson", 
        "givenName": "M. I.", 
        "id": "sg:person.0721775233.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(06)71788-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003445948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/50/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025050016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/50/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025050016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028590714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028590714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.205214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028590714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030811740", 
          "https://doi.org/10.1038/nature05545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.046806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035330755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.046806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035330755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.146101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035875149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.146101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035875149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.016801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036167317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502848102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036398807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040221074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0558021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056063468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0558021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056063468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019870048070108500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2811680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057873276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.4951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.4951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.214102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.214102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.2471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.145701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.145701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.249.4967.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062540013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1098952686", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11", 
    "datePublishedReg": "2007-11-01", 
    "description": "The stability of two-dimensional (2D) layers and membranes is the subject of a long-standing theoretical debate. According to the so-called Mermin-Wagner theorem, long-wavelength fluctuations destroy the long-range order of 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes meaning that a 2D membrane can exist but will exhibit strong height fluctuations. The discovery of graphene, the first truly 2D crystal, and the recent experimental observation of ripples in suspended graphene make these issues especially important. Besides the academic interest, understanding the mechanisms of the stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest owing to its unusual Dirac spectrum and electronic properties. We address the nature of these height fluctuations by means of atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear owing to thermal fluctuations with a size distribution peaked around 80 A which is compatible with experimental findings (50-100 A). This unexpected result might be due to the multiplicity of chemical bonding in carbon.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat2011", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Intrinsic ripples in graphene", 
    "pagination": "858-861", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2af2d9298359aacd4388d8bdd7f6c32d19575c18d8afa3e4c77f7f0921d97c30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17891144"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2011"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009015153"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2011", 
      "https://app.dimensions.ai/details/publication/pub.1009015153"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000581.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmat2011"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2011'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2011'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2011'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2011'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2011 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author Nd470e3e5c758490fad4b8c680032b14b
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nature04235
6 sg:pub.10.1038/nature05545
7 sg:pub.10.1038/nmat1849
8 https://app.dimensions.ai/details/publication/pub.1098952686
9 https://doi.org/10.1016/s1369-7021(06)71788-6
10 https://doi.org/10.1021/jp0558021
11 https://doi.org/10.1051/jphys:019870048070108500
12 https://doi.org/10.1063/1.2811680
13 https://doi.org/10.1073/pnas.0502848102
14 https://doi.org/10.1088/0953-8984/17/50/r01
15 https://doi.org/10.1103/physrev.176.250
16 https://doi.org/10.1103/physrevb.5.4951
17 https://doi.org/10.1103/physrevb.71.205214
18 https://doi.org/10.1103/physrevb.72.214102
19 https://doi.org/10.1103/physrevlett.55.2471
20 https://doi.org/10.1103/physrevlett.69.1209
21 https://doi.org/10.1103/physrevlett.71.1565
22 https://doi.org/10.1103/physrevlett.94.145701
23 https://doi.org/10.1103/physrevlett.96.046806
24 https://doi.org/10.1103/physrevlett.97.016801
25 https://doi.org/10.1103/physrevlett.98.146101
26 https://doi.org/10.1126/science.1102896
27 https://doi.org/10.1126/science.249.4967.393
28 schema:datePublished 2007-11
29 schema:datePublishedReg 2007-11-01
30 schema:description The stability of two-dimensional (2D) layers and membranes is the subject of a long-standing theoretical debate. According to the so-called Mermin-Wagner theorem, long-wavelength fluctuations destroy the long-range order of 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes meaning that a 2D membrane can exist but will exhibit strong height fluctuations. The discovery of graphene, the first truly 2D crystal, and the recent experimental observation of ripples in suspended graphene make these issues especially important. Besides the academic interest, understanding the mechanisms of the stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest owing to its unusual Dirac spectrum and electronic properties. We address the nature of these height fluctuations by means of atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear owing to thermal fluctuations with a size distribution peaked around 80 A which is compatible with experimental findings (50-100 A). This unexpected result might be due to the multiplicity of chemical bonding in carbon.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N22d4ab8702784cf08a6171427f1151d4
35 N75db320dd53f47ee9e231094efb57b64
36 sg:journal.1031408
37 schema:name Intrinsic ripples in graphene
38 schema:pagination 858-861
39 schema:productId N34e58f521d2a45e9a9599f6fc12610fc
40 N84ed4d529638406289e10a1ba4c99917
41 Ncd00e056f12a4b0b99d86d740f560d55
42 Ne7150d7c997743a5832ebd90c838d41b
43 Nf36c06d89be84640bb117f0c6395090e
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009015153
45 https://doi.org/10.1038/nmat2011
46 schema:sdDatePublished 2019-04-10T14:20
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N57e31078305b4e49b7c4a722cc048f6d
49 schema:url http://www.nature.com/articles/nmat2011
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N22d4ab8702784cf08a6171427f1151d4 schema:volumeNumber 6
54 rdf:type schema:PublicationVolume
55 N2d95846cafa3403a8bd0b01c3480c453 rdf:first sg:person.0721775233.60
56 rdf:rest rdf:nil
57 N34e58f521d2a45e9a9599f6fc12610fc schema:name pubmed_id
58 schema:value 17891144
59 rdf:type schema:PropertyValue
60 N57e31078305b4e49b7c4a722cc048f6d schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N75db320dd53f47ee9e231094efb57b64 schema:issueNumber 11
63 rdf:type schema:PublicationIssue
64 N84ed4d529638406289e10a1ba4c99917 schema:name dimensions_id
65 schema:value pub.1009015153
66 rdf:type schema:PropertyValue
67 Na7d5b319fe4c42dfbe27e74c55bdbded rdf:first sg:person.01072035572.85
68 rdf:rest N2d95846cafa3403a8bd0b01c3480c453
69 Ncd00e056f12a4b0b99d86d740f560d55 schema:name nlm_unique_id
70 schema:value 101155473
71 rdf:type schema:PropertyValue
72 Nd470e3e5c758490fad4b8c680032b14b rdf:first sg:person.01057101356.20
73 rdf:rest Na7d5b319fe4c42dfbe27e74c55bdbded
74 Ne7150d7c997743a5832ebd90c838d41b schema:name readcube_id
75 schema:value 2af2d9298359aacd4388d8bdd7f6c32d19575c18d8afa3e4c77f7f0921d97c30
76 rdf:type schema:PropertyValue
77 Nf36c06d89be84640bb117f0c6395090e schema:name doi
78 schema:value 10.1038/nmat2011
79 rdf:type schema:PropertyValue
80 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
81 schema:name Chemical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
84 schema:name Theoretical and Computational Chemistry
85 rdf:type schema:DefinedTerm
86 sg:journal.1031408 schema:issn 1476-1122
87 1476-4660
88 schema:name Nature Materials
89 rdf:type schema:Periodical
90 sg:person.01057101356.20 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
91 schema:familyName Fasolino
92 schema:givenName A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057101356.20
94 rdf:type schema:Person
95 sg:person.01072035572.85 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
96 schema:familyName Los
97 schema:givenName J. H.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072035572.85
99 rdf:type schema:Person
100 sg:person.0721775233.60 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
101 schema:familyName Katsnelson
102 schema:givenName M. I.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60
104 rdf:type schema:Person
105 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
106 https://doi.org/10.1038/nature04233
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
109 https://doi.org/10.1038/nature04235
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nature05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030811740
112 https://doi.org/10.1038/nature05545
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
115 https://doi.org/10.1038/nmat1849
116 rdf:type schema:CreativeWork
117 https://app.dimensions.ai/details/publication/pub.1098952686 schema:CreativeWork
118 https://doi.org/10.1016/s1369-7021(06)71788-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003445948
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/jp0558021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056063468
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1051/jphys:019870048070108500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991834
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.2811680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057873276
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0953-8984/17/50/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025050016
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrev.176.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440145
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.5.4951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572246
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.71.205214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028590714
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.72.214102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060615904
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.55.2471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792403
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.69.1209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040221074
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.71.1565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807499
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.94.145701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830170
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.96.046806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035330755
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.97.016801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036167317
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.98.146101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035875149
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.249.4967.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062540013
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
157 schema:name Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, The Netherlands
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...