A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10

AUTHORS

B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, L. F. Nazar

ABSTRACT

In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability. Only one member of this class--the olivine LiFePO(4) (ref. 3)--has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary. Thus, nanocrystallites are key to enable fast rate behaviour. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A(2)FePO(4)F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction-oxidation are minimal. This results in a volume change of only 3.7% that--unlike the olivine--contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical. More... »

PAGES

749

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat2007

DOI

http://dx.doi.org/10.1038/nmat2007

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040257171

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17828278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellis", 
        "givenName": "B. L.", 
        "id": "sg:person.01067625511.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067625511.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makahnouk", 
        "givenName": "W. R. M.", 
        "id": "sg:person.013661000241.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661000241.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makimura", 
        "givenName": "Y.", 
        "id": "sg:person.016501245517.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501245517.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toghill", 
        "givenName": "K.", 
        "id": "sg:person.01266554202.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266554202.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazar", 
        "givenName": "L. F.", 
        "id": "sg:person.0716036416.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036416.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1149/1.1379565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008599490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008957673", 
          "https://doi.org/10.1038/nmat1634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008957673", 
          "https://doi.org/10.1038/nmat1634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jssc.1997.7629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014395584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014889034", 
          "https://doi.org/10.1038/nmat1368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jssc.1998.7908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016644116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1837571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021283991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889801002242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028704415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0614114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029077551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0614114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029077551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1393348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036736945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-7753(86)80093-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036792249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037169002", 
          "https://doi.org/10.1038/nmat1335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037169002", 
          "https://doi.org/10.1038/nmat1335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038287292", 
          "https://doi.org/10.1038/nmat1063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038287292", 
          "https://doi.org/10.1038/nmat1063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b003150j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041040355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2005.11.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048784452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jssc.1999.8447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050086992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108270196014102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050346886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0513738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055411686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm0513738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055411686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja028973h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja028973h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.104301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1523691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2168288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063189459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2201987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063189530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2710960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063189712"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability. Only one member of this class--the olivine LiFePO(4) (ref. 3)--has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary. Thus, nanocrystallites are key to enable fast rate behaviour. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A(2)FePO(4)F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction-oxidation are minimal. This results in a volume change of only 3.7% that--unlike the olivine--contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat2007", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A multifunctional 3.5\u2009V iron-based phosphate cathode for rechargeable\u00a0batteries", 
    "pagination": "749", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bfc5132508ad4301d6d9d34496406c729e1dbb768faa27268169d7edf6d82647"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17828278"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat2007"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040257171"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat2007", 
      "https://app.dimensions.ai/details/publication/pub.1040257171"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat2007"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat2007'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat2007'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat2007'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat2007'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat2007 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb0911bf496b1441482cd4c523af92b1b
4 schema:citation sg:pub.10.1038/nmat1063
5 sg:pub.10.1038/nmat1335
6 sg:pub.10.1038/nmat1368
7 sg:pub.10.1038/nmat1634
8 https://doi.org/10.1006/jssc.1997.7629
9 https://doi.org/10.1006/jssc.1998.7908
10 https://doi.org/10.1006/jssc.1999.8447
11 https://doi.org/10.1016/0378-7753(86)80093-3
12 https://doi.org/10.1016/j.jpowsour.2005.11.075
13 https://doi.org/10.1021/cm0513738
14 https://doi.org/10.1021/ja028973h
15 https://doi.org/10.1021/ja0614114
16 https://doi.org/10.1039/b003150j
17 https://doi.org/10.1103/physrevb.73.104301
18 https://doi.org/10.1107/s0021889801002242
19 https://doi.org/10.1107/s0108270196014102
20 https://doi.org/10.1149/1.1379565
21 https://doi.org/10.1149/1.1393348
22 https://doi.org/10.1149/1.1523691
23 https://doi.org/10.1149/1.1837571
24 https://doi.org/10.1149/1.2168288
25 https://doi.org/10.1149/1.2201987
26 https://doi.org/10.1149/1.2710960
27 schema:datePublished 2007-10
28 schema:datePublishedReg 2007-10-01
29 schema:description In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability. Only one member of this class--the olivine LiFePO(4) (ref. 3)--has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary. Thus, nanocrystallites are key to enable fast rate behaviour. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A(2)FePO(4)F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction-oxidation are minimal. This results in a volume change of only 3.7% that--unlike the olivine--contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N0e841eb9348c47bda5f0186bb4dd84c2
34 N27bf36461eef4d0999c924147ae77815
35 sg:journal.1031408
36 schema:name A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries
37 schema:pagination 749
38 schema:productId N1277487d91734b91aadaeec8be3979d0
39 N5656f50c9fcd4ffca86333a076cbf2e1
40 N98c8e0d1ce5a447bacdc35f64ea60b3b
41 Na10ee2ec08dc4271be9682e632de5b91
42 Nc080aea05ee8470582ca4bee51c7f3b9
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040257171
44 https://doi.org/10.1038/nmat2007
45 schema:sdDatePublished 2019-04-10T21:52
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nde5d0c678dbe49569d6651dd3b8ff9e2
48 schema:url https://www.nature.com/articles/nmat2007
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0e841eb9348c47bda5f0186bb4dd84c2 schema:issueNumber 10
53 rdf:type schema:PublicationIssue
54 N1277487d91734b91aadaeec8be3979d0 schema:name pubmed_id
55 schema:value 17828278
56 rdf:type schema:PropertyValue
57 N27bf36461eef4d0999c924147ae77815 schema:volumeNumber 6
58 rdf:type schema:PublicationVolume
59 N2bc80a04c3f0447c8f5c081dc234494b rdf:first sg:person.013661000241.88
60 rdf:rest N4948e523bbe141fb8328a7e568e0a4e1
61 N3ab9123925d84ae6b3ef09863f28e88f rdf:first sg:person.01266554202.64
62 rdf:rest Nb911b6fa58914bceb79029c342984782
63 N4948e523bbe141fb8328a7e568e0a4e1 rdf:first sg:person.016501245517.43
64 rdf:rest N3ab9123925d84ae6b3ef09863f28e88f
65 N5656f50c9fcd4ffca86333a076cbf2e1 schema:name doi
66 schema:value 10.1038/nmat2007
67 rdf:type schema:PropertyValue
68 N98c8e0d1ce5a447bacdc35f64ea60b3b schema:name nlm_unique_id
69 schema:value 101155473
70 rdf:type schema:PropertyValue
71 Na10ee2ec08dc4271be9682e632de5b91 schema:name readcube_id
72 schema:value bfc5132508ad4301d6d9d34496406c729e1dbb768faa27268169d7edf6d82647
73 rdf:type schema:PropertyValue
74 Nb0911bf496b1441482cd4c523af92b1b rdf:first sg:person.01067625511.96
75 rdf:rest N2bc80a04c3f0447c8f5c081dc234494b
76 Nb911b6fa58914bceb79029c342984782 rdf:first sg:person.0716036416.82
77 rdf:rest rdf:nil
78 Nc080aea05ee8470582ca4bee51c7f3b9 schema:name dimensions_id
79 schema:value pub.1040257171
80 rdf:type schema:PropertyValue
81 Nde5d0c678dbe49569d6651dd3b8ff9e2 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
84 schema:name Chemical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Chemistry (incl. Structural)
88 rdf:type schema:DefinedTerm
89 sg:journal.1031408 schema:issn 1476-1122
90 1476-4660
91 schema:name Nature Materials
92 rdf:type schema:Periodical
93 sg:person.01067625511.96 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
94 schema:familyName Ellis
95 schema:givenName B. L.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067625511.96
97 rdf:type schema:Person
98 sg:person.01266554202.64 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
99 schema:familyName Toghill
100 schema:givenName K.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266554202.64
102 rdf:type schema:Person
103 sg:person.013661000241.88 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
104 schema:familyName Makahnouk
105 schema:givenName W. R. M.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661000241.88
107 rdf:type schema:Person
108 sg:person.016501245517.43 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
109 schema:familyName Makimura
110 schema:givenName Y.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016501245517.43
112 rdf:type schema:Person
113 sg:person.0716036416.82 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
114 schema:familyName Nazar
115 schema:givenName L. F.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716036416.82
117 rdf:type schema:Person
118 sg:pub.10.1038/nmat1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038287292
119 https://doi.org/10.1038/nmat1063
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nmat1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037169002
122 https://doi.org/10.1038/nmat1335
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat1368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014889034
125 https://doi.org/10.1038/nmat1368
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nmat1634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008957673
128 https://doi.org/10.1038/nmat1634
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/jssc.1997.7629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014395584
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/jssc.1998.7908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016644116
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1006/jssc.1999.8447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050086992
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0378-7753(86)80093-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036792249
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.jpowsour.2005.11.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048784452
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/cm0513738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055411686
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/ja028973h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055831912
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1021/ja0614114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029077551
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1039/b003150j schema:sameAs https://app.dimensions.ai/details/publication/pub.1041040355
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.73.104301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616837
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1107/s0021889801002242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028704415
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1107/s0108270196014102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050346886
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1149/1.1379565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008599490
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1149/1.1393348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036736945
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1149/1.1523691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187582
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1149/1.1837571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021283991
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1149/1.2168288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063189459
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1149/1.2201987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063189530
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1149/1.2710960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063189712
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
169 schema:name Department of Chemistry, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2L 3G1, Canada
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...