Detection of individual gas molecules adsorbed on graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-09

AUTHORS

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov

ABSTRACT

The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required. More... »

PAGES

652

Journal

TITLE

Nature Materials

ISSUE

9

VOLUME

6

Related Patents

  • Use And Making Of Biosensors Utilizing Antimicrobial Peptides For Highly Sensitive Biological Monitoring
  • Dna-Decorated Graphene Chemical Sensors
  • An Apparatus For Detection, Identification Of Molecules And Sequencing Of Dna, Rna Or Other Natural Or Artificial Polymers Using Graphene And A Laser Light Beam.
  • Crystalline Graphene And Method Of Making Crystalline Graphene
  • Field Effect Transistor For Chemical Sensing Using Graphene, Chemical Sensor Using The Transistor And Method For Producing The Transistor
  • High-Resolution Molecular Sensor
  • Manufacturing Method Of A Graphene-Based Electrochemical Sensor, And Electrochemical Sensor
  • Three-Dimensional Texturing Of Two-Dimensional Materials
  • Method For Synthesis Of High Quality Graphene
  • Nano-Carbon Sensor And Method Of Making A Sensor
  • Reductive-Expansion Synthesis Of Graphene
  • Environmental Sensor And A Method For Determining Relative Vapour Pressure
  • Nanogap Device With Capped Nanowire Structures
  • Nano-Carbon Sensor And Method Of Making A Sensor
  • Asymmetric Bottom Contacted Device
  • Graphene Quantum Dots, Their Composites And Preparation Of The Same
  • Field-Effect Sensor And Associated Methods
  • Graphene Formation
  • Manufacturing Method Of A Graphene-Based Electrochemical Sensor, And Electrochemical Sensor
  • An Apparatus And Associated Methods For Analyte Detection
  • Alteration Of Graphene Defects
  • Nano-Soldering To Single Atomic Layer
  • Functionalised Graphene
  • Functionally Switchable Self-Assembled Coating Compound For Controlling Translocation Of Molecule Through Nanopores
  • Direct Chemical Vapor Deposition Of Graphene On Dielectric Surfaces
  • Graphene Nanoribbon Sensor
  • Graphene Composition, Method Of Forming A Graphene Composition And Sensor System Comprising A Graphene Composition
  • Graphene Defect Detection
  • Manufacturing Method Of A Graphene-Based Electrochemical Sensor, And Electrochemical Sensor
  • Catalytic Devices
  • Design Of Ultra-Fast Suspended Graphene Nano-Sensors Suitable For Large Scale Production
  • Graphene-Based Gas And Bio Sensor With High Sensitivity And Selectivity
  • Functionalized Graphene And Methods Of Manufacturing The Same
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat1967

    DOI

    http://dx.doi.org/10.1038/nmat1967

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043196688

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17660825


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schedin", 
            "givenName": "F.", 
            "id": "sg:person.0640512403.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640512403.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geim", 
            "givenName": "A. K.", 
            "id": "sg:person.0721730631.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Microelectronics Technology and High Purity Materials", 
              "id": "https://www.grid.ac/institutes/grid.425037.7", 
              "name": [
                "Institute for Microelectronics Technology, 142432 Chernogolovka, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morozov", 
            "givenName": "S. V.", 
            "id": "sg:person.07423561367.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423561367.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hill", 
            "givenName": "E. W.", 
            "id": "sg:person.010205212117.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010205212117.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blake", 
            "givenName": "P.", 
            "id": "sg:person.01167557463.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167557463.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Radboud University Nijmegen", 
              "id": "https://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "Institute for Molecules and Materials, University of Nijmegen, 6525 ED Nijmegen, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Katsnelson", 
            "givenName": "M. I.", 
            "id": "sg:person.0721775233.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novoselov", 
            "givenName": "K. S.", 
            "id": "sg:person.01070436546.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070436546.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.287.5453.622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006186722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.287.5459.1801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007182871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730110113644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007622624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.256602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015081104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.256602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015081104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-0233/8/3/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018640513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/chin.200429283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023646831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2191420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028739877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1130681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030731383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030811740", 
              "https://doi.org/10.1038/nature05545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.016801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036167317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.016801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036167317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502848102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036398807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl050298x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040185440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl050298x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040185440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1125925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040736915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1136836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044176639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.186806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045628783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.186806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045628783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052791836", 
              "https://doi.org/10.1038/nmat1849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2159564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057840472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.53.497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.53.497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.290.5496.1552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062572218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.75.074716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063122564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jpsj.75.074716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063122564"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-09", 
        "datePublishedReg": "2007-09-01", 
        "description": "The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat1967", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2753788", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Detection of individual gas molecules adsorbed on graphene", 
        "pagination": "652", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cdc2a21d2c2d707ed2037a88958d28ac85430e813d786a36ff3659cb7a364135"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17660825"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat1967"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043196688"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat1967", 
          "https://app.dimensions.ai/details/publication/pub.1043196688"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T12:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nmat1967"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1967'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1967'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1967'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1967'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat1967 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Ne2455337d3b64949b57184caa142bd0a
    4 schema:citation sg:pub.10.1038/nature04233
    5 sg:pub.10.1038/nature04235
    6 sg:pub.10.1038/nature05545
    7 sg:pub.10.1038/nmat1849
    8 https://doi.org/10.1002/chin.200429283
    9 https://doi.org/10.1021/nl050298x
    10 https://doi.org/10.1063/1.2159564
    11 https://doi.org/10.1063/1.2191420
    12 https://doi.org/10.1073/pnas.0502848102
    13 https://doi.org/10.1080/00018730110113644
    14 https://doi.org/10.1088/0957-0233/8/3/003
    15 https://doi.org/10.1103/physrevlett.96.256602
    16 https://doi.org/10.1103/physrevlett.97.016801
    17 https://doi.org/10.1103/physrevlett.98.186806
    18 https://doi.org/10.1103/revmodphys.53.497
    19 https://doi.org/10.1126/science.1125925
    20 https://doi.org/10.1126/science.1130681
    21 https://doi.org/10.1126/science.1136836
    22 https://doi.org/10.1126/science.287.5453.622
    23 https://doi.org/10.1126/science.287.5459.1801
    24 https://doi.org/10.1126/science.290.5496.1552
    25 https://doi.org/10.1143/jpsj.75.074716
    26 schema:datePublished 2007-09
    27 schema:datePublishedReg 2007-09-01
    28 schema:description The ultimate aim of any detection method is to achieve such a level of sensitivity that individual quanta of a measured entity can be resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such resolution has so far been beyond the reach of any detection technique, including solid-state gas sensors hailed for their exceptional sensitivity. The fundamental reason limiting the resolution of such sensors is fluctuations due to thermal motion of charges and defects, which lead to intrinsic noise exceeding the sought-after signal from individual molecules, usually by many orders of magnitude. Here, we show that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface. The adsorbed molecules change the local carrier concentration in graphene one by one electron, which leads to step-like changes in resistance. The achieved sensitivity is due to the fact that graphene is an exceptionally low-noise material electronically, which makes it a promising candidate not only for chemical detectors but also for other applications where local probes sensitive to external charge, magnetic field or mechanical strain are required.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N51c76e85412640da9f61f7988d9817e4
    33 N6a21adc4601a494d8d407d9e36441873
    34 sg:journal.1031408
    35 schema:name Detection of individual gas molecules adsorbed on graphene
    36 schema:pagination 652
    37 schema:productId N118f38b55e944f96a9e08131d2da176a
    38 N3da18d3d40f24700aaf5f650190c2468
    39 N9c8043a3ef164c8facd21f21274f6e17
    40 Nbb770bccab5a4334a25c5d9ea24276a6
    41 Ne999ec0e46bf49098a1ef5f0ea778f55
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196688
    43 https://doi.org/10.1038/nmat1967
    44 schema:sdDatePublished 2019-04-10T12:59
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Ne3464f740e434abcacf388aebdf0916e
    47 schema:url https://www.nature.com/articles/nmat1967
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N118f38b55e944f96a9e08131d2da176a schema:name doi
    52 schema:value 10.1038/nmat1967
    53 rdf:type schema:PropertyValue
    54 N3da18d3d40f24700aaf5f650190c2468 schema:name nlm_unique_id
    55 schema:value 101155473
    56 rdf:type schema:PropertyValue
    57 N48b62c1f498c4922825796425cdda5c9 rdf:first sg:person.0721730631.45
    58 rdf:rest Need36f689d7a47e89c6b9c8b903350ef
    59 N51c76e85412640da9f61f7988d9817e4 schema:issueNumber 9
    60 rdf:type schema:PublicationIssue
    61 N6a21adc4601a494d8d407d9e36441873 schema:volumeNumber 6
    62 rdf:type schema:PublicationVolume
    63 N9c8043a3ef164c8facd21f21274f6e17 schema:name pubmed_id
    64 schema:value 17660825
    65 rdf:type schema:PropertyValue
    66 N9f770eae4c47488f8ff13c30dc4f1833 rdf:first sg:person.01167557463.05
    67 rdf:rest Na6d6e56a359d43ac8af19bbddebd6d8c
    68 Na44b1610211a4d7e9283ffaaae124243 rdf:first sg:person.01070436546.24
    69 rdf:rest rdf:nil
    70 Na6d6e56a359d43ac8af19bbddebd6d8c rdf:first sg:person.0721775233.60
    71 rdf:rest Na44b1610211a4d7e9283ffaaae124243
    72 Nbb770bccab5a4334a25c5d9ea24276a6 schema:name dimensions_id
    73 schema:value pub.1043196688
    74 rdf:type schema:PropertyValue
    75 Nde87ce3bf17d4644802c7301d9501e09 rdf:first sg:person.010205212117.50
    76 rdf:rest N9f770eae4c47488f8ff13c30dc4f1833
    77 Ne2455337d3b64949b57184caa142bd0a rdf:first sg:person.0640512403.86
    78 rdf:rest N48b62c1f498c4922825796425cdda5c9
    79 Ne3464f740e434abcacf388aebdf0916e schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Ne999ec0e46bf49098a1ef5f0ea778f55 schema:name readcube_id
    82 schema:value cdc2a21d2c2d707ed2037a88958d28ac85430e813d786a36ff3659cb7a364135
    83 rdf:type schema:PropertyValue
    84 Need36f689d7a47e89c6b9c8b903350ef rdf:first sg:person.07423561367.62
    85 rdf:rest Nde87ce3bf17d4644802c7301d9501e09
    86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Physical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Other Physical Sciences
    91 rdf:type schema:DefinedTerm
    92 sg:grant.2753788 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1967
    93 rdf:type schema:MonetaryGrant
    94 sg:journal.1031408 schema:issn 1476-1122
    95 1476-4660
    96 schema:name Nature Materials
    97 rdf:type schema:Periodical
    98 sg:person.010205212117.50 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    99 schema:familyName Hill
    100 schema:givenName E. W.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010205212117.50
    102 rdf:type schema:Person
    103 sg:person.01070436546.24 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    104 schema:familyName Novoselov
    105 schema:givenName K. S.
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070436546.24
    107 rdf:type schema:Person
    108 sg:person.01167557463.05 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    109 schema:familyName Blake
    110 schema:givenName P.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167557463.05
    112 rdf:type schema:Person
    113 sg:person.0640512403.86 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    114 schema:familyName Schedin
    115 schema:givenName F.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640512403.86
    117 rdf:type schema:Person
    118 sg:person.0721730631.45 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    119 schema:familyName Geim
    120 schema:givenName A. K.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45
    122 rdf:type schema:Person
    123 sg:person.0721775233.60 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
    124 schema:familyName Katsnelson
    125 schema:givenName M. I.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721775233.60
    127 rdf:type schema:Person
    128 sg:person.07423561367.62 schema:affiliation https://www.grid.ac/institutes/grid.425037.7
    129 schema:familyName Morozov
    130 schema:givenName S. V.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423561367.62
    132 rdf:type schema:Person
    133 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    134 https://doi.org/10.1038/nature04233
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    137 https://doi.org/10.1038/nature04235
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nature05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030811740
    140 https://doi.org/10.1038/nature05545
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    143 https://doi.org/10.1038/nmat1849
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1002/chin.200429283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023646831
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1021/nl050298x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040185440
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1063/1.2159564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057840472
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1063/1.2191420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028739877
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1080/00018730110113644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007622624
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1088/0957-0233/8/3/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018640513
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevlett.96.256602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015081104
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevlett.97.016801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036167317
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevlett.98.186806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045628783
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/revmodphys.53.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838982
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1126/science.1130681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030731383
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1126/science.1136836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044176639
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1126/science.287.5453.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006186722
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1126/science.287.5459.1801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007182871
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1126/science.290.5496.1552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062572218
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1143/jpsj.75.074716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063122564
    180 rdf:type schema:CreativeWork
    181 https://www.grid.ac/institutes/grid.425037.7 schema:alternateName Institute of Microelectronics Technology and High Purity Materials
    182 schema:name Institute for Microelectronics Technology, 142432 Chernogolovka, Russia
    183 rdf:type schema:Organization
    184 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
    185 schema:name Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK
    186 rdf:type schema:Organization
    187 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
    188 schema:name Institute for Molecules and Materials, University of Nijmegen, 6525 ED Nijmegen, Netherlands
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...