Elastic membranes of close-packed nanoparticle arrays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-09

AUTHORS

Klara E. Mueggenburg, Xiao-Min Lin, Rodney H. Goldsmith, Heinrich M. Jaeger

ABSTRACT

Nanoparticle superlattices are hybrid materials composed of close-packed inorganic particles separated by short organic spacers. Most work so far has concentrated on the unique electronic, optical and magnetic behaviour of these systems. Here, we demonstrate that they also possess remarkable mechanical properties. We focus on two-dimensional arrays of close-packed nanoparticles and show that they can be stretched across micrometre-size holes. The resulting free-standing monolayer membranes extend over hundreds of particle diameters without crosslinking of the ligands or further embedding in polymer. To characterize the membranes we measured elastic properties with force microscopy and determined the array structure using transmission electron microscopy. For dodecanethiol-ligated 6-nm-diameter gold nanocrystal monolayers, we find a Young's modulus of the order of several GPa. This remarkable strength is coupled with high flexibility, enabling the membranes to bend easily while draping over edges. The arrays remain intact and able to withstand tensile stresses up to temperatures around 370 K. The purely elastic response of these ultrathin membranes, coupled with exceptional robustness and resilience at high temperatures should make them excellent candidates for a wide range of sensor applications. More... »

PAGES

656

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1965

DOI

http://dx.doi.org/10.1038/nmat1965

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037405084

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17643104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mueggenburg", 
        "givenName": "Klara E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Ave., Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Xiao-Min", 
        "id": "sg:person.01267452117.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267452117.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldsmith", 
        "givenName": "Rodney H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "James Franck Institute and Department of Physics, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaeger", 
        "givenName": "Heinrich M.", 
        "id": "sg:person.01252327714.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat1212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001016074", 
          "https://doi.org/10.1038/nmat1212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001016074", 
          "https://doi.org/10.1038/nmat1212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200400149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006058058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-3861(97)10218-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007522395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1139131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011372500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b312640b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014064766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016628731", 
          "https://doi.org/10.1038/nmat1798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016628731", 
          "https://doi.org/10.1038/nmat1798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.186807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024724271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.186807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024724271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(02)01103-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026190082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027433", 
          "https://doi.org/10.1038/nmat1611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027433", 
          "https://doi.org/10.1038/nmat1611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1130557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034482205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la960319q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036413793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la960319q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036413793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(91)90048-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037587312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0956-7151(91)90048-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037587312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/414735a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040182728", 
          "https://doi.org/10.1038/414735a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/414735a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040182728", 
          "https://doi.org/10.1038/414735a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-8914(37)80203-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042099137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2004.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042233148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010078521951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046741293", 
          "https://doi.org/10.1023/a:1010078521951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja036919a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046765228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja036919a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046765228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052261638", 
          "https://doi.org/10.1038/nmat1655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052261638", 
          "https://doi.org/10.1038/nmat1655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00183a049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055712217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp961721g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056122424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp961721g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056122424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl051921g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl051921g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1301/69/8/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059092921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.026103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.026103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1827246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062075049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1057553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5240.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551679"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09", 
    "datePublishedReg": "2007-09-01", 
    "description": "Nanoparticle superlattices are hybrid materials composed of close-packed inorganic particles separated by short organic spacers. Most work so far has concentrated on the unique electronic, optical and magnetic behaviour of these systems. Here, we demonstrate that they also possess remarkable mechanical properties. We focus on two-dimensional arrays of close-packed nanoparticles and show that they can be stretched across micrometre-size holes. The resulting free-standing monolayer membranes extend over hundreds of particle diameters without crosslinking of the ligands or further embedding in polymer. To characterize the membranes we measured elastic properties with force microscopy and determined the array structure using transmission electron microscopy. For dodecanethiol-ligated 6-nm-diameter gold nanocrystal monolayers, we find a Young's modulus of the order of several GPa. This remarkable strength is coupled with high flexibility, enabling the membranes to bend easily while draping over edges. The arrays remain intact and able to withstand tensile stresses up to temperatures around 370 K. The purely elastic response of these ultrathin membranes, coupled with exceptional robustness and resilience at high temperatures should make them excellent candidates for a wide range of sensor applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1965", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3028404", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Elastic membranes of close-packed nanoparticle arrays", 
    "pagination": "656", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b22e81afe11001da4dbda8e33d8485604a2707780f77e22f6b0efd6c48c6d990"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17643104"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1965"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037405084"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1965", 
      "https://app.dimensions.ai/details/publication/pub.1037405084"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat1965"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1965'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1965'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1965'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1965'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1965 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N07b2e12b5e434ff195f728d16cdfe331
4 schema:citation sg:pub.10.1023/a:1010078521951
5 sg:pub.10.1038/414735a
6 sg:pub.10.1038/nature04414
7 sg:pub.10.1038/nmat1212
8 sg:pub.10.1038/nmat1611
9 sg:pub.10.1038/nmat1655
10 sg:pub.10.1038/nmat1798
11 https://doi.org/10.1002/adfm.200400149
12 https://doi.org/10.1016/0956-7151(91)90048-6
13 https://doi.org/10.1016/j.jmps.2004.03.002
14 https://doi.org/10.1016/s0031-8914(37)80203-7
15 https://doi.org/10.1016/s0032-3861(97)10218-x
16 https://doi.org/10.1016/s0040-6090(02)01103-3
17 https://doi.org/10.1021/ja00183a049
18 https://doi.org/10.1021/ja036919a
19 https://doi.org/10.1021/jp961721g
20 https://doi.org/10.1021/la960319q
21 https://doi.org/10.1021/nl051921g
22 https://doi.org/10.1039/b312640b
23 https://doi.org/10.1088/0370-1301/69/8/305
24 https://doi.org/10.1103/physrevlett.87.186807
25 https://doi.org/10.1103/physrevlett.98.026103
26 https://doi.org/10.1115/1.1827246
27 https://doi.org/10.1126/science.1057553
28 https://doi.org/10.1126/science.1130557
29 https://doi.org/10.1126/science.1139131
30 https://doi.org/10.1126/science.270.5240.1335
31 schema:datePublished 2007-09
32 schema:datePublishedReg 2007-09-01
33 schema:description Nanoparticle superlattices are hybrid materials composed of close-packed inorganic particles separated by short organic spacers. Most work so far has concentrated on the unique electronic, optical and magnetic behaviour of these systems. Here, we demonstrate that they also possess remarkable mechanical properties. We focus on two-dimensional arrays of close-packed nanoparticles and show that they can be stretched across micrometre-size holes. The resulting free-standing monolayer membranes extend over hundreds of particle diameters without crosslinking of the ligands or further embedding in polymer. To characterize the membranes we measured elastic properties with force microscopy and determined the array structure using transmission electron microscopy. For dodecanethiol-ligated 6-nm-diameter gold nanocrystal monolayers, we find a Young's modulus of the order of several GPa. This remarkable strength is coupled with high flexibility, enabling the membranes to bend easily while draping over edges. The arrays remain intact and able to withstand tensile stresses up to temperatures around 370 K. The purely elastic response of these ultrathin membranes, coupled with exceptional robustness and resilience at high temperatures should make them excellent candidates for a wide range of sensor applications.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf Nbf1f24be727a4b7c963f1c495f5b6a97
38 Ncd6e9de6ae4c4f5e8877296704d51044
39 sg:journal.1031408
40 schema:name Elastic membranes of close-packed nanoparticle arrays
41 schema:pagination 656
42 schema:productId N2b6c14e0871142f7b3f314cbf0ed605f
43 N301d261656cb4d5d9abc74bcc2d59b0f
44 N4daab9a2da2a47fd8d8d8b218e505229
45 N5bb51aed621e4f79bd4d106770aad12e
46 N706dffc6184c4abb97b1ebdf39be8945
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037405084
48 https://doi.org/10.1038/nmat1965
49 schema:sdDatePublished 2019-04-10T15:38
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Ndd6919ff7d954cfcba6f53b0f8b74f48
52 schema:url https://www.nature.com/articles/nmat1965
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N06a592ff5d894b8f939aff5af03a389a rdf:first Nf80993bcb8974881a02a27193238e900
57 rdf:rest Nd9e1adfafa404a7e8b901c3813fba219
58 N07b2e12b5e434ff195f728d16cdfe331 rdf:first N38fec6abad1742e1b81c6f2b54533ac3
59 rdf:rest N1b0a04e590e144b8a874e1d3ba5bdbe6
60 N1b0a04e590e144b8a874e1d3ba5bdbe6 rdf:first sg:person.01267452117.94
61 rdf:rest N06a592ff5d894b8f939aff5af03a389a
62 N2b6c14e0871142f7b3f314cbf0ed605f schema:name doi
63 schema:value 10.1038/nmat1965
64 rdf:type schema:PropertyValue
65 N301d261656cb4d5d9abc74bcc2d59b0f schema:name nlm_unique_id
66 schema:value 101155473
67 rdf:type schema:PropertyValue
68 N38fec6abad1742e1b81c6f2b54533ac3 schema:affiliation N3a4f17a8856f4ed7acf334326e19d57f
69 schema:familyName Mueggenburg
70 schema:givenName Klara E.
71 rdf:type schema:Person
72 N3a4f17a8856f4ed7acf334326e19d57f schema:name James Franck Institute and Department of Physics, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA
73 rdf:type schema:Organization
74 N4daab9a2da2a47fd8d8d8b218e505229 schema:name dimensions_id
75 schema:value pub.1037405084
76 rdf:type schema:PropertyValue
77 N500a8aaa36774ff59cd260851c973be8 schema:name James Franck Institute and Department of Physics, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA
78 rdf:type schema:Organization
79 N5bb51aed621e4f79bd4d106770aad12e schema:name pubmed_id
80 schema:value 17643104
81 rdf:type schema:PropertyValue
82 N706dffc6184c4abb97b1ebdf39be8945 schema:name readcube_id
83 schema:value b22e81afe11001da4dbda8e33d8485604a2707780f77e22f6b0efd6c48c6d990
84 rdf:type schema:PropertyValue
85 Nbf1f24be727a4b7c963f1c495f5b6a97 schema:issueNumber 9
86 rdf:type schema:PublicationIssue
87 Ncd6e9de6ae4c4f5e8877296704d51044 schema:volumeNumber 6
88 rdf:type schema:PublicationVolume
89 Nd9e1adfafa404a7e8b901c3813fba219 rdf:first sg:person.01252327714.89
90 rdf:rest rdf:nil
91 Ndd6919ff7d954cfcba6f53b0f8b74f48 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Ne8fb51f3e0da44d9a7b49ef3e7a47a8e schema:name James Franck Institute and Department of Physics, The University of Chicago, 929 E. 57th St., Chicago, Illinois 60637, USA
94 rdf:type schema:Organization
95 Nf80993bcb8974881a02a27193238e900 schema:affiliation Ne8fb51f3e0da44d9a7b49ef3e7a47a8e
96 schema:familyName Goldsmith
97 schema:givenName Rodney H.
98 rdf:type schema:Person
99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Chemistry (incl. Structural)
104 rdf:type schema:DefinedTerm
105 sg:grant.3028404 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1965
106 rdf:type schema:MonetaryGrant
107 sg:journal.1031408 schema:issn 1476-1122
108 1476-4660
109 schema:name Nature Materials
110 rdf:type schema:Periodical
111 sg:person.01252327714.89 schema:affiliation N500a8aaa36774ff59cd260851c973be8
112 schema:familyName Jaeger
113 schema:givenName Heinrich M.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89
115 rdf:type schema:Person
116 sg:person.01267452117.94 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
117 schema:familyName Lin
118 schema:givenName Xiao-Min
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267452117.94
120 rdf:type schema:Person
121 sg:pub.10.1023/a:1010078521951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046741293
122 https://doi.org/10.1023/a:1010078521951
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/414735a schema:sameAs https://app.dimensions.ai/details/publication/pub.1040182728
125 https://doi.org/10.1038/414735a
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature04414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602302
128 https://doi.org/10.1038/nature04414
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nmat1212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001016074
131 https://doi.org/10.1038/nmat1212
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat1611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027433
134 https://doi.org/10.1038/nmat1611
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nmat1655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052261638
137 https://doi.org/10.1038/nmat1655
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nmat1798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016628731
140 https://doi.org/10.1038/nmat1798
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/adfm.200400149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006058058
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0956-7151(91)90048-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037587312
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jmps.2004.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042233148
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0031-8914(37)80203-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042099137
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0032-3861(97)10218-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007522395
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0040-6090(02)01103-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026190082
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/ja00183a049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055712217
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/ja036919a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046765228
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/jp961721g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056122424
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/la960319q schema:sameAs https://app.dimensions.ai/details/publication/pub.1036413793
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/nl051921g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216487
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1039/b312640b schema:sameAs https://app.dimensions.ai/details/publication/pub.1014064766
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0370-1301/69/8/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059092921
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.87.186807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024724271
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.98.026103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833383
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1115/1.1827246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075049
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.1057553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444348
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.1130557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034482205
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.1139131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011372500
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.270.5240.1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551679
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.187073.a schema:alternateName Argonne National Laboratory
183 schema:name Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Ave., Argonne, Illinois 60439, USA
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...