The rise of graphene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

A. K. Geim, K. S. Novoselov

ABSTRACT

Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications. More... »

PAGES

183-191

Journal

TITLE

Nature Materials

ISSUE

3

VOLUME

6

Author Affiliations

Related Patents

  • Doped Graphene Electronic Materials
  • Optic Fiber With Carbon Nano-Structure Layer, Fiber Optic Chemical Sensor And Method For Forming Carbon Nano-Structure Layer In Fiber Core
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Direct And Sequential Formation Of Monolayers Of Boron Nitride And Graphene On Substrates
  • Layer-By-Layer Removal Of Graphene
  • Graphene Membrane With Size-Tunable Nanoscale Pores
  • Graphene-Sulfur Nanocomposites For Rechargeable Lithium-Sulfur Battery Electrodes
  • Doped Graphene Electronic Materials
  • Pellicle For Reticle And Multilayer Mirror
  • Nanopore Device With Graphene Supported Artificial Lipid Membrane
  • System For Detecting Rare Cells
  • Graphene/Graphite Polymer Composite Foam Derived From Emulsions Stabilized By Graphene/Graphite Kinetic Trapping
  • Yield Optimization Of Processor With Graphene-Based Transistors
  • Carbon Layer And Method Of Manufacture
  • Optical Component Array Having Adjustable Curvature
  • Electrical Devices With Graphene On Boron Nitride
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Manufacturing Method Of A Graphene-Based Electrochemical Sensor, And Electrochemical Sensor
  • Crystallographically-Oriented Carbon Nanotubes Grown On Few-Layer Graphene Films
  • Stretchable And Foldable Electronic Devices
  • Lens-Free Planar Imager Using An Optical Resonator
  • Nanostructured Carbon-Based Material
  • Nano Graphene Platelet-Based Conductive Inks And Printing Process
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Glass-Ceramics Substrates For Graphene Growth
  • Oxidized Graphite And Carbon Fiber
  • Graphene Based Thermal Interface Materials And Methods Of Manufacturing The Same
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Optical Systems Fabricated By Printing-Based Assembly
  • Bipolar Magnetic Junction Transistor With Magnetoamplification And Applications Of Same
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Direct Synthesis Of Patterned Graphene By Deposition
  • Conformable Actively Multiplexed High-Density Surface Electrode Array For Brain Interfacing
  • Method For Synthesis Of High Quality Graphene
  • Anisotropic Semiconductor Film And Method Of Production Thereof
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Graphene Sheet And Process Of Preparing The Same
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Programmable Logic Based On A Magnetic Diode And Applications Of Same
  • Stretchable And Foldable Electronic Devices
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Printable, Flexible And Stretchable Diamond For Thermal Management
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Thermally Managed Led Arrays Assembled By Printing
  • Transient Devices Designed To Undergo Programmable Transformations
  • Waterproof Stretchable Optoelectronics
  • Three-Dimensional (3d) Printing Of Graphene Materials
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Graphene Sheet And Process Of Preparing The Same
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Lithium Metal Phosphate/Carbon Nanocomposites As Cathode Active Materials For Rechargeable Lithium Batteries
  • Method For Preparing A Substantially Clean Monolayer Of A Two-Dimensional Material
  • Process For The Production Of Carbon Graphenes And Other Nanomaterials
  • Extremely Stretchable Electronics
  • Systems, Methods, And Devices Having Stretchable Integrated Circuitry For Sensing And Delivering Therapy
  • Logic Cells Based On Spin Diode And Applications Of Same
  • Synthesis Of Ultra-Large Graphene Oxide Sheets
  • Optical Systems Fabricated By Printing-Based Assembly
  • Graphene Quantum Dots, Their Composites And Preparation Of The Same
  • Noise Reduction Methods For Nucleic Acid And Macromolecule Sequencing
  • Implantable Biomedical Devices On Bioresorbable Substrates
  • Electrochemical Cell
  • Ultracompact Fabry-Perot Array For Ultracompact Hyperspectral Imaging
  • Graphene Formation
  • Anisotropic Semiconductor Film And Method Of Production Thereof
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Extremely Stretchable Electronics
  • Lossless Hyperspectral Imaging
  • Doped Graphene Electronic Materials
  • Methods And Applications Of Non-Planar Imaging Arrays
  • Single Crystalline Graphene Sheet And Process Of Preparing The Same
  • Method For Transferring A Graphene Layer
  • Graphene Photonics For Resonator-Enhanced Electro-Optic Devices And All-Optical Interactions
  • Catheter Balloon Having Stretchable Integrated Circuitry And Sensor Array
  • Dispersible And Conductive Nano Graphene Platelets
  • Carbon-Based Semiconductors
  • Broadband Optical Limiter Based On Nano-Graphene And Method Of Fabricating Same
  • Process For The Production Of Carbon Nanoparticles And Sequestration Of Carbon
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • All Graphene Flash Memory Device
  • Direct Formation Of Graphene On Semiconductor Substrates
  • Functional Anchors Connecting Graphene-Like Carbon To Metal
  • Embedding Thin Chips In Polymer
  • Stretchable Form Of Single Crystal Silicon For High Performance Electronics On Rubber Substrates
  • Manufacturing Method Of A Graphene-Based Electrochemical Sensor, And Electrochemical Sensor
  • Devices With Graphene Layers
  • Graphene-Encapsulated Nanoparticle-Based Biosensor For The Selective Detection Of Biomarkers
  • Lithium Manganese Phosphate/Carbon Nanocomposites As Cathode Active Materials For Secondary Lithium Batteries
  • Method And Apparatus
  • Process For Manufacturing Colloidal Materials, Colloidal Materials And Their Uses
  • Functionalised Graphene
  • Appendage Mountable Electronic Devices Conformable To Surfaces
  • Direct Formation Of Graphene On Semiconductor Substrates
  • Cerium (Iv) - Salts As Active Dopant For Carbon Nanotubes And Graph
  • Graphene Sheet And Process Of Preparing The Same
  • Carbon Fiber And Method For Producing Same
  • Direct Chemical Vapor Deposition Of Graphene On Dielectric Surfaces
  • Printed Assemblies Of Ultrathin, Microscale Inorganic Light Emitting Diodes For Deformable And Semitransparent Displays
  • Lithium Manganese Phosphate/Carbon Nanocomposites As Cathode Active Materials For Secondary Lithium Batteries
  • All 2d, High Mobility, Flexible, Transparent Thin Film Transistor
  • Doped Graphene Electronic Materials
  • Pellicle For Reticle And Multilayer Mirror
  • Optical Systems Fabricated By Printing-Based Assembly
  • Method For Preparing Microstructure Arrays On The Surface Of Thin Film Material
  • Graphene Dried Powder And Method For Its Preparation
  • Processing Of Monolayer Materials Via Interfacial Reactions
  • Graphene/Metal Molecular Level Lamination (Gmmll)
  • Manufacturing Method Of A Graphene-Based Electrochemical Sensor, And Electrochemical Sensor
  • Broadband Optical Limiter Based On Nano-Graphene And Method Of Fabricating Same
  • Doped Graphene Electronic Materials
  • Modular Synthesis Of Graphene Nanoribbons And Graphene Substructures From Oligo-Alkynes
  • Crystallographically-Oriented Carbon Nanotubes Grown On Few-Layer Graphene Films
  • Direct And Sequential Formation Of Monolayers Of Boron Nitride And Graphene On Substrates
  • Low-Temperature Method Of Producing Nano-Scaled Graphene Platelets And Their Nanocomposites
  • Crystalline Surface Structures And Methods For Their Fabrication
  • Optic Fiber With Carbon Nano-Structure Layer, Fiber Optic Chemical Sensor And Method For Forming Carbon Nano-Structure Layer In Fiber Core
  • Parallel Fabrication Of Nanogaps And Devices Thereof
  • Process For Manufacturing Colloidal Materials, Colloidal Materials And Their Uses
  • Methods For Production Of Single-Crystal Graphenes
  • Method Of Manufacturing A Flexible And/Or Stretchable Electronic Device
  • Microfluidic Device And Method For Detecting Rare Cells
  • Optical Systems Fabricated By Printing-Based Assembly
  • Methods And Devices For Fabricating And Assembling Printable Semiconductor Elements
  • Doped Graphene Electronic Materials
  • Method For Growing High-Quality Graphene Layer
  • Design Of Ultra-Fast Suspended Graphene Nano-Sensors Suitable For Large Scale Production
  • Cationic Polymerization Process For The Synthesis Of Nano-Structured Polymers Containing Graphene
  • Electrical Devices With Graphene On Boron Nitride
  • Modular Synthesis Of Graphene Nanoribbons And Graphene Substructures From Oligo-Alkynes
  • Process For Producing Dispersible And Conductive Nano Graphene Platelets From Non-Oxidized Graphitic Materials
  • Protective Cases With Integrated Electronics
  • Lithographic Apparatus And Method
  • Direct Formation Of Graphene On Semiconductor Substrates
  • Stretchable And Foldable Electronic Devices
  • Methods Of Fabrication Of Graphene Nanoribbons
  • Flexible Transparent Conductive Film Within Led Flexible Transparent Display Structure
  • Dissolution Of Graphite, Graphite And Graphene Nanoribbons In Superacid Solutions And Manipulation Thereof
  • Method For Passivating Surfaces, Functionalizing Inert Surfaces, Layers And Devices Including Same
  • Flexible Electronic Structure
  • Board And Method For Growing High-Quality Graphene Layer
  • Supercritical Fluid Process For Producing Nano Graphene Platelets
  • Doped Graphene Electronic Materials
  • Stable Dispersions Of Single And Multiple Graphene Layers In Solution
  • Graphene-Based Gas And Bio Sensor With High Sensitivity And Selectivity
  • Systems, Methods, And Devices Using Stretchable Or Flexible Electronics For Medical Applications
  • Method For The Preparation Of Polyaniline/Reduced Graphene Oxide Composites
  • Graphene Supported Artificial Membranes And Uses Thereof
  • Flexible Transparent Conductive Film Within Led Flexible Transparent Display Structure
  • Nanomaterials And Process For Making The Same
  • Nanowire-Modified Graphene And Methods Of Making And Using Same
  • Printable Semiconductor Structures And Related Methods Of Making And Assembling
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat1849

    DOI

    http://dx.doi.org/10.1038/nmat1849

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052791836

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17330084


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geim", 
            "givenName": "A. K.", 
            "id": "sg:person.0721730631.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Manchester", 
              "id": "https://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novoselov", 
            "givenName": "K. S.", 
            "id": "sg:person.01207120103.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207120103.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001061831", 
              "https://doi.org/10.1038/nature04233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.187401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001174697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001673667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.126801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001673667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.256801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002145965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.256801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002145965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/14/39/201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002872408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7209/tanso.1997.235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002907978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.075423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003575556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.075423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003575556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.246802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006021087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.246802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006021087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730110113644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007622624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(93)91480-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008063847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(93)91480-d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008063847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018737400101371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009412555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/41284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009502232", 
              "https://doi.org/10.1038/41284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/41284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009502232", 
              "https://doi.org/10.1038/41284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.161403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009593757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.161403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009593757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009714128", 
              "https://doi.org/10.1038/nature04235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012453170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012780501", 
              "https://doi.org/10.1038/nature05555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.146801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014724283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.146801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014724283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010907928709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014837640", 
              "https://doi.org/10.1023/a:1010907928709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.235443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015048589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.235443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015048589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.256602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015081104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.256602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015081104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfrep.2005.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015845714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.236801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017633811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.236801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017633811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.153401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018402281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.153401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018402281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/79/57003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018695558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1102896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019008412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.076602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019297410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.076602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019297410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.235417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019944367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.235417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019944367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021533520", 
              "https://doi.org/10.1038/nphys384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021533520", 
              "https://doi.org/10.1038/nphys384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.266801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021811636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.266801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021811636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl061420a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022969717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl061420a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022969717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.206801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023934809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.206801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023934809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.176803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024399001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.176803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024399001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.216802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025059126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.216802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025059126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.153405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025255727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.75.153405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025255727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(75)90419-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026136881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(75)90419-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026136881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029345003", 
              "https://doi.org/10.1038/nature04969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.136806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030099143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.136806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030099143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.246802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030661697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.246802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030661697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1130681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030731383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030811740", 
              "https://doi.org/10.1038/nature05545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1137201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033456804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.201401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035548037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.201401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035548037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.201401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035548037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.016801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036167317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.016801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036167317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.045108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036278135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.045108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036278135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502848102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036398807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036402917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036402917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(92)90183-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037573409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(92)90183-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037573409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6727(01)00005-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037690764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2006-00203-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037816708", 
              "https://doi.org/10.1140/epjb/e2006-00203-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.075422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039988058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.075422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039988058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.086805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040008071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.086805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040008071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1125925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040736915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp040650f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041254699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp040650f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041254699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042100217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042100217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2006.10.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043136846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045648349", 
              "https://doi.org/10.1038/nphys393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045648349", 
              "https://doi.org/10.1038/nphys393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.176803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046029861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.176803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046029861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.235411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048359007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.235411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048359007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048452401", 
              "https://doi.org/10.1038/nphys245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048452401", 
              "https://doi.org/10.1038/nphys245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/47/4/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048587637"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.196804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048844626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.196804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048844626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.146805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049601108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.146805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049601108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.125411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.73.125411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051404887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048111+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048111+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056215838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1650228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057730005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1689746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057763217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.104.666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.104.666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.109.272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.109.272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060420046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.176.250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.176.250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.71.622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.71.622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.28.2235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060533043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.28.2235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060533043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.33.3263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060539519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.33.3263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060539519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.7526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060574347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.7526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060574347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.17954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.58.16396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060589547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.58.16396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060589547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.205416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060601392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.205416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060601392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.245420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.65.245420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060603587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.075404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060618498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.74.075404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060618498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.43.1428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060698970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.43.1428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060698970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.2449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.2449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060807582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.71.1887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060807582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.82.2147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060819093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmag.2006.878852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061678738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1926293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062170624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1926293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062170624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1078842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062447165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.246.4928.369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062538551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1098952686", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-03", 
        "datePublishedReg": "2007-03-01", 
        "description": "Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat1849", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "The rise of graphene", 
        "pagination": "183-191", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb769800ea439e0b23e6ce3a4ac762bc0646c40e818b171cfb5a53a187acd79f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17330084"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat1849"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052791836"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat1849", 
          "https://app.dimensions.ai/details/publication/pub.1052791836"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000596.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmat1849"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1849'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1849'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1849'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1849'


     

    This table displays all metadata directly associated to this object as RDF triples.

    350 TRIPLES      21 PREDICATES      117 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat1849 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Ncb805d02bdc14abeaa1a3f6de124f0b1
    4 schema:citation sg:pub.10.1023/a:1010907928709
    5 sg:pub.10.1038/41284
    6 sg:pub.10.1038/nature04233
    7 sg:pub.10.1038/nature04235
    8 sg:pub.10.1038/nature04969
    9 sg:pub.10.1038/nature05545
    10 sg:pub.10.1038/nature05555
    11 sg:pub.10.1038/nphys245
    12 sg:pub.10.1038/nphys384
    13 sg:pub.10.1038/nphys393
    14 sg:pub.10.1140/epjb/e2006-00203-1
    15 https://app.dimensions.ai/details/publication/pub.1098952686
    16 https://doi.org/10.1016/0039-6028(75)90419-7
    17 https://doi.org/10.1016/0039-6028(92)90183-7
    18 https://doi.org/10.1016/0039-6028(93)91480-d
    19 https://doi.org/10.1016/j.nuclphysb.2006.10.031
    20 https://doi.org/10.1016/j.surfrep.2005.08.004
    21 https://doi.org/10.1016/s0079-6727(01)00005-2
    22 https://doi.org/10.1021/jp040650f
    23 https://doi.org/10.1021/nl048111+
    24 https://doi.org/10.1021/nl061420a
    25 https://doi.org/10.1063/1.1650228
    26 https://doi.org/10.1063/1.1689746
    27 https://doi.org/10.1073/pnas.0502848102
    28 https://doi.org/10.1080/00018730110113644
    29 https://doi.org/10.1080/00018737400101371
    30 https://doi.org/10.1088/0034-4885/47/4/002
    31 https://doi.org/10.1088/0953-8984/14/39/201
    32 https://doi.org/10.1103/physrev.104.666
    33 https://doi.org/10.1103/physrev.109.272
    34 https://doi.org/10.1103/physrev.176.250
    35 https://doi.org/10.1103/physrev.71.622
    36 https://doi.org/10.1103/physrevb.28.2235
    37 https://doi.org/10.1103/physrevb.33.3263
    38 https://doi.org/10.1103/physrevb.50.7526
    39 https://doi.org/10.1103/physrevb.54.17954
    40 https://doi.org/10.1103/physrevb.58.16396
    41 https://doi.org/10.1103/physrevb.64.205416
    42 https://doi.org/10.1103/physrevb.65.245420
    43 https://doi.org/10.1103/physrevb.66.045108
    44 https://doi.org/10.1103/physrevb.72.201401
    45 https://doi.org/10.1103/physrevb.73.125411
    46 https://doi.org/10.1103/physrevb.73.235411
    47 https://doi.org/10.1103/physrevb.74.075404
    48 https://doi.org/10.1103/physrevb.74.075422
    49 https://doi.org/10.1103/physrevb.74.075423
    50 https://doi.org/10.1103/physrevb.74.161403
    51 https://doi.org/10.1103/physrevb.74.235417
    52 https://doi.org/10.1103/physrevb.74.235443
    53 https://doi.org/10.1103/physrevb.75.153401
    54 https://doi.org/10.1103/physrevb.75.153405
    55 https://doi.org/10.1103/physrevd.43.1428
    56 https://doi.org/10.1103/physrevlett.53.2449
    57 https://doi.org/10.1103/physrevlett.61.2015
    58 https://doi.org/10.1103/physrevlett.71.1887
    59 https://doi.org/10.1103/physrevlett.77.3589
    60 https://doi.org/10.1103/physrevlett.80.3113
    61 https://doi.org/10.1103/physrevlett.82.2147
    62 https://doi.org/10.1103/physrevlett.87.246802
    63 https://doi.org/10.1103/physrevlett.94.176803
    64 https://doi.org/10.1103/physrevlett.94.206801
    65 https://doi.org/10.1103/physrevlett.95.146801
    66 https://doi.org/10.1103/physrevlett.96.086805
    67 https://doi.org/10.1103/physrevlett.96.136806
    68 https://doi.org/10.1103/physrevlett.96.176803
    69 https://doi.org/10.1103/physrevlett.96.246802
    70 https://doi.org/10.1103/physrevlett.96.256602
    71 https://doi.org/10.1103/physrevlett.97.016801
    72 https://doi.org/10.1103/physrevlett.97.126801
    73 https://doi.org/10.1103/physrevlett.97.146805
    74 https://doi.org/10.1103/physrevlett.97.187401
    75 https://doi.org/10.1103/physrevlett.97.196804
    76 https://doi.org/10.1103/physrevlett.97.216803
    77 https://doi.org/10.1103/physrevlett.97.236801
    78 https://doi.org/10.1103/physrevlett.97.256801
    79 https://doi.org/10.1103/physrevlett.97.266801
    80 https://doi.org/10.1103/physrevlett.98.076602
    81 https://doi.org/10.1103/physrevlett.99.216802
    82 https://doi.org/10.1109/tmag.2006.878852
    83 https://doi.org/10.1116/1.1926293
    84 https://doi.org/10.1126/science.1078842
    85 https://doi.org/10.1126/science.1102896
    86 https://doi.org/10.1126/science.1125925
    87 https://doi.org/10.1126/science.1130681
    88 https://doi.org/10.1126/science.1137201
    89 https://doi.org/10.1126/science.246.4928.369
    90 https://doi.org/10.1209/0295-5075/79/57003
    91 https://doi.org/10.7209/tanso.1997.235
    92 schema:datePublished 2007-03
    93 schema:datePublishedReg 2007-03-01
    94 schema:description Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
    95 schema:genre research_article
    96 schema:inLanguage en
    97 schema:isAccessibleForFree false
    98 schema:isPartOf Naeb2827c30e84b43a591a4b17ee513ee
    99 Ndb931afb991c4d4b833a6252d0f1a0f0
    100 sg:journal.1031408
    101 schema:name The rise of graphene
    102 schema:pagination 183-191
    103 schema:productId N1741723de91b4d41be3bd951376f33f2
    104 N571cc43f98c84939a39d165a8b447bb5
    105 Nc0aa7abf52ef484ab3cea544ea2ba4f1
    106 Nebb98f6c216d4b00bfe4414df038a6c7
    107 Nff48baa196f04477a05a72544c9bc520
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
    109 https://doi.org/10.1038/nmat1849
    110 schema:sdDatePublished 2019-04-10T20:09
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N47b1c9b1a32f4195b349360896599960
    113 schema:url http://www.nature.com/articles/nmat1849
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N1741723de91b4d41be3bd951376f33f2 schema:name readcube_id
    118 schema:value fb769800ea439e0b23e6ce3a4ac762bc0646c40e818b171cfb5a53a187acd79f
    119 rdf:type schema:PropertyValue
    120 N47b1c9b1a32f4195b349360896599960 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N571cc43f98c84939a39d165a8b447bb5 schema:name nlm_unique_id
    123 schema:value 101155473
    124 rdf:type schema:PropertyValue
    125 N580f0af63afd4311a96d0ec712aa81cd rdf:first sg:person.01207120103.29
    126 rdf:rest rdf:nil
    127 Naeb2827c30e84b43a591a4b17ee513ee schema:issueNumber 3
    128 rdf:type schema:PublicationIssue
    129 Nc0aa7abf52ef484ab3cea544ea2ba4f1 schema:name pubmed_id
    130 schema:value 17330084
    131 rdf:type schema:PropertyValue
    132 Ncb805d02bdc14abeaa1a3f6de124f0b1 rdf:first sg:person.0721730631.45
    133 rdf:rest N580f0af63afd4311a96d0ec712aa81cd
    134 Ndb931afb991c4d4b833a6252d0f1a0f0 schema:volumeNumber 6
    135 rdf:type schema:PublicationVolume
    136 Nebb98f6c216d4b00bfe4414df038a6c7 schema:name dimensions_id
    137 schema:value pub.1052791836
    138 rdf:type schema:PropertyValue
    139 Nff48baa196f04477a05a72544c9bc520 schema:name doi
    140 schema:value 10.1038/nmat1849
    141 rdf:type schema:PropertyValue
    142 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Physical Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    147 rdf:type schema:DefinedTerm
    148 sg:journal.1031408 schema:issn 1476-1122
    149 1476-4660
    150 schema:name Nature Materials
    151 rdf:type schema:Periodical
    152 sg:person.01207120103.29 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    153 schema:familyName Novoselov
    154 schema:givenName K. S.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207120103.29
    156 rdf:type schema:Person
    157 sg:person.0721730631.45 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
    158 schema:familyName Geim
    159 schema:givenName A. K.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721730631.45
    161 rdf:type schema:Person
    162 sg:pub.10.1023/a:1010907928709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014837640
    163 https://doi.org/10.1023/a:1010907928709
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/41284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009502232
    166 https://doi.org/10.1038/41284
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
    169 https://doi.org/10.1038/nature04233
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
    172 https://doi.org/10.1038/nature04235
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nature04969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029345003
    175 https://doi.org/10.1038/nature04969
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nature05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030811740
    178 https://doi.org/10.1038/nature05545
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nature05555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012780501
    181 https://doi.org/10.1038/nature05555
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nphys245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048452401
    184 https://doi.org/10.1038/nphys245
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nphys384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021533520
    187 https://doi.org/10.1038/nphys384
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nphys393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045648349
    190 https://doi.org/10.1038/nphys393
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1140/epjb/e2006-00203-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037816708
    193 https://doi.org/10.1140/epjb/e2006-00203-1
    194 rdf:type schema:CreativeWork
    195 https://app.dimensions.ai/details/publication/pub.1098952686 schema:CreativeWork
    196 https://doi.org/10.1016/0039-6028(75)90419-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026136881
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/0039-6028(92)90183-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037573409
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/0039-6028(93)91480-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1008063847
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.nuclphysb.2006.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043136846
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.surfrep.2005.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015845714
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/s0079-6727(01)00005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037690764
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1021/jp040650f schema:sameAs https://app.dimensions.ai/details/publication/pub.1041254699
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1021/nl048111+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1056215838
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1021/nl061420a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022969717
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1063/1.1650228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057730005
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1063/1.1689746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057763217
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1080/00018730110113644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007622624
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1080/00018737400101371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009412555
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1088/0034-4885/47/4/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048587637
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1088/0953-8984/14/39/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002872408
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1103/physrev.104.666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418310
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1103/physrev.109.272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420046
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1103/physrev.176.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440145
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1103/physrev.71.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453259
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1103/physrevb.28.2235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533043
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1103/physrevb.33.3263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539519
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1103/physrevb.50.7526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574347
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1103/physrevb.54.17954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582080
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1103/physrevb.58.16396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589547
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1103/physrevb.64.205416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060601392
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1103/physrevb.65.245420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603587
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1103/physrevb.66.045108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036278135
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1103/physrevb.72.201401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035548037
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1103/physrevb.73.125411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051404887
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1103/physrevb.73.235411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048359007
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1103/physrevb.74.075404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060618498
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1103/physrevb.74.075422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039988058
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1103/physrevb.74.075423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003575556
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1103/physrevb.74.161403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009593757
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1103/physrevb.74.235417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019944367
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1103/physrevb.74.235443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015048589
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1103/physrevb.75.153401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018402281
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1103/physrevb.75.153405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025255727
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1103/physrevd.43.1428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060698970
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1103/physrevlett.53.2449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790810
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1103/physrevlett.61.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797796
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1103/physrevlett.71.1887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807582
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1103/physrevlett.77.3589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036402917
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1103/physrevlett.80.3113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042100217
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1103/physrevlett.82.2147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819093
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1103/physrevlett.87.246802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006021087
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1103/physrevlett.94.176803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046029861
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1103/physrevlett.94.206801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023934809
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1103/physrevlett.95.146801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014724283
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1103/physrevlett.96.086805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040008071
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1103/physrevlett.96.136806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030099143
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1103/physrevlett.96.176803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024399001
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1103/physrevlett.96.246802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030661697
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1103/physrevlett.96.256602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015081104
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1103/physrevlett.97.016801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036167317
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1103/physrevlett.97.126801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001673667
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1103/physrevlett.97.146805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049601108
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1103/physrevlett.97.196804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048844626
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1103/physrevlett.97.216803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012453170
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1103/physrevlett.97.236801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017633811
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1103/physrevlett.97.256801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002145965
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1103/physrevlett.97.266801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021811636
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1103/physrevlett.98.076602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019297410
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1103/physrevlett.99.216802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025059126
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1109/tmag.2006.878852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061678738
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1116/1.1926293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062170624
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1126/science.1078842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447165
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1126/science.1125925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040736915
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1126/science.1130681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030731383
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1126/science.1137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456804
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1126/science.246.4928.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538551
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1209/0295-5075/79/57003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018695558
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.7209/tanso.1997.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002907978
    347 rdf:type schema:CreativeWork
    348 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
    349 schema:name Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Oxford Road, Manchester M13 9PL, UK
    350 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...