Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-02-18

AUTHORS

Vojislav R. Stamenkovic, Bongjin Simon Mun, Matthias Arenz, Karl J. J. Mayrhofer, Christopher A. Lucas, Guofeng Wang, Philip N. Ross, Nenad M. Markovic

ABSTRACT

One of the key objectives in fuel-cell technology is to improve and reduce Pt loading as the oxygen-reduction catalyst. Here, we show a fundamental relationship in electrocatalytic trends on Pt3M (M=Ni, Co, Fe, Ti, V) surfaces between the experimentally determined surface electronic structure (the d-band centre) and activity for the oxygen-reduction reaction. This relationship exhibits ‘volcano-type’ behaviour, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species. The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt3M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts. By combining simulations with experiments in the quest for surfaces with desired activity, an advanced concept in nanoscale catalyst engineering has been developed. More... »

PAGES

241-247

References to SciGraph publications

  • 2001-11. Hydrogen-storage materials for mobile applications in NATURE
  • 2000-03. New Electrocatalysts for Fuel Cells from Model Surfaces to Commercial Catalysts in CATTECH
  • 2001-11. Materials for fuel-cell technologies in NATURE
  • 2004-10-17. Alloy catalysts designed from first principles in NATURE MATERIALS
  • 2001-11. Alternative energy technologies in NATURE
  • 1997. Theory of Adsorption and Surface Reactions in CHEMISORPTION AND REACTIVITY ON SUPPORTED CLUSTERS AND THIN FILMS
  • 1983. Oxygen Electrochemistry in COMPREHENSIVE TREATISE OF ELECTROCHEMISTRY
  • Journal

    TITLE

    Nature Materials

    ISSUE

    3

    VOLUME

    6

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat1840

    DOI

    http://dx.doi.org/10.1038/nmat1840

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004600703

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17310139


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA", 
                "Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stamenkovic", 
            "givenName": "Vojislav R.", 
            "id": "sg:person.0657060565.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657060565.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, Korea", 
              "id": "http://www.grid.ac/institutes/grid.49606.3d", 
              "name": [
                "Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA", 
                "Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mun", 
            "givenName": "Bongjin Simon", 
            "id": "sg:person.01311004326.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311004326.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Munich, 80333 Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6936.a", 
              "name": [
                "Technical University of Munich, 80333 Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arenz", 
            "givenName": "Matthias", 
            "id": "sg:person.01013563346.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013563346.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mayrhofer", 
            "givenName": "Karl J. J.", 
            "id": "sg:person.014406601437.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406601437.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lucas", 
            "givenName": "Christopher A.", 
            "id": "sg:person.0745067700.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745067700.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Chemistry and Physics, University of South Carolina, Aiken, South Carolina 29801, USA", 
              "id": "http://www.grid.ac/institutes/grid.254567.7", 
              "name": [
                "Department of Chemistry and Physics, University of South Carolina, Aiken, South Carolina 29801, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Guofeng", 
            "id": "sg:person.012443453511.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443453511.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ross", 
            "givenName": "Philip N.", 
            "id": "sg:person.010545450060.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545450060.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA", 
              "id": "http://www.grid.ac/institutes/grid.187073.a", 
              "name": [
                "Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Markovic", 
            "givenName": "Nenad M.", 
            "id": "sg:person.01353524352.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353524352.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1011963731898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039931394", 
              "https://doi.org/10.1023/a:1011963731898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039029936", 
              "https://doi.org/10.1038/nmat1223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35104599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006186815", 
              "https://doi.org/10.1038/35104599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-3584-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041040884", 
              "https://doi.org/10.1007/978-1-4613-3584-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35104634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000018115", 
              "https://doi.org/10.1038/35104634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-8911-6_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043270200", 
              "https://doi.org/10.1007/978-94-015-8911-6_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35104620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021573346", 
              "https://doi.org/10.1038/35104620"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-02-18", 
        "datePublishedReg": "2007-02-18", 
        "description": "One of the key objectives in fuel-cell technology is to improve and reduce Pt loading as the oxygen-reduction catalyst. Here, we show a fundamental relationship in electrocatalytic trends on Pt3M (M=Ni, Co, Fe, Ti, V) surfaces between the experimentally determined surface electronic structure (the d-band centre) and activity for the oxygen-reduction reaction. This relationship exhibits \u2018volcano-type\u2019 behaviour, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species. The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt3M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts. By combining simulations with experiments in the quest for surfaces with desired activity, an advanced concept in nanoscale catalyst engineering has been developed.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nmat1840", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2759432", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "keywords": [
          "electrocatalytic trends", 
          "oxygen reduction catalysts", 
          "oxygen reduction reaction", 
          "fuel cell technology", 
          "maximum catalytic activity", 
          "surface electronic structure", 
          "cathode catalyst", 
          "spectator species", 
          "catalyst engineering", 
          "catalytic enhancement", 
          "adsorption energy", 
          "Pt loading", 
          "catalytic activity", 
          "reactive intermediates", 
          "surface coverage", 
          "electronic structure", 
          "alloy surface", 
          "catalyst", 
          "extended surfaces", 
          "M surface", 
          "surface", 
          "advanced concepts", 
          "electrocatalysis", 
          "nanocatalysts", 
          "intermediates", 
          "reaction", 
          "loading", 
          "engineering", 
          "fundamental relationship", 
          "technology", 
          "fundamental basis", 
          "simulations", 
          "activity", 
          "key objective", 
          "structure", 
          "enhancement", 
          "energy", 
          "coverage", 
          "behavior", 
          "species", 
          "experiments", 
          "trends", 
          "balance", 
          "concept", 
          "basis", 
          "quest", 
          "objective", 
          "patterns", 
          "relationship", 
          "activity patterns"
        ], 
        "name": "Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces", 
        "pagination": "241-247", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004600703"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat1840"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17310139"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat1840", 
          "https://app.dimensions.ai/details/publication/pub.1004600703"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_438.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nmat1840"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1840'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1840'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1840'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1840'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      82 URIs      67 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat1840 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N641232c84bd74f1c8f26d2e9698971c2
    4 schema:citation sg:pub.10.1007/978-1-4613-3584-9_6
    5 sg:pub.10.1007/978-94-015-8911-6_11
    6 sg:pub.10.1023/a:1011963731898
    7 sg:pub.10.1038/35104599
    8 sg:pub.10.1038/35104620
    9 sg:pub.10.1038/35104634
    10 sg:pub.10.1038/nmat1223
    11 schema:datePublished 2007-02-18
    12 schema:datePublishedReg 2007-02-18
    13 schema:description One of the key objectives in fuel-cell technology is to improve and reduce Pt loading as the oxygen-reduction catalyst. Here, we show a fundamental relationship in electrocatalytic trends on Pt3M (M=Ni, Co, Fe, Ti, V) surfaces between the experimentally determined surface electronic structure (the d-band centre) and activity for the oxygen-reduction reaction. This relationship exhibits ‘volcano-type’ behaviour, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species. The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt3M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts. By combining simulations with experiments in the quest for surfaces with desired activity, an advanced concept in nanoscale catalyst engineering has been developed.
    14 schema:genre article
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N0d19d7df1eff4fe6b7584bd214a57049
    17 Nbc85a8e56f1f477bb64019f41ec89b2e
    18 sg:journal.1031408
    19 schema:keywords M surface
    20 Pt loading
    21 activity
    22 activity patterns
    23 adsorption energy
    24 advanced concepts
    25 alloy surface
    26 balance
    27 basis
    28 behavior
    29 catalyst
    30 catalyst engineering
    31 catalytic activity
    32 catalytic enhancement
    33 cathode catalyst
    34 concept
    35 coverage
    36 electrocatalysis
    37 electrocatalytic trends
    38 electronic structure
    39 energy
    40 engineering
    41 enhancement
    42 experiments
    43 extended surfaces
    44 fuel cell technology
    45 fundamental basis
    46 fundamental relationship
    47 intermediates
    48 key objective
    49 loading
    50 maximum catalytic activity
    51 nanocatalysts
    52 objective
    53 oxygen reduction catalysts
    54 oxygen reduction reaction
    55 patterns
    56 quest
    57 reaction
    58 reactive intermediates
    59 relationship
    60 simulations
    61 species
    62 spectator species
    63 structure
    64 surface
    65 surface coverage
    66 surface electronic structure
    67 technology
    68 trends
    69 schema:name Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces
    70 schema:pagination 241-247
    71 schema:productId N991918d98ac849c1807332ebc3ceae7a
    72 Ndbfa88ced7ce412cb9fdc18c03ca6c0d
    73 Nddb02182f315478ab0206a6961989924
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004600703
    75 https://doi.org/10.1038/nmat1840
    76 schema:sdDatePublished 2022-09-02T15:52
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher Nbdbaf895c7b342369e085764718220eb
    79 schema:url https://doi.org/10.1038/nmat1840
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N0d19d7df1eff4fe6b7584bd214a57049 schema:volumeNumber 6
    84 rdf:type schema:PublicationVolume
    85 N416c97a68dce4ead872d035f7a36521d rdf:first sg:person.012443453511.65
    86 rdf:rest N7c4529a649ac47fa8b2342bf568d2cd4
    87 N641232c84bd74f1c8f26d2e9698971c2 rdf:first sg:person.0657060565.03
    88 rdf:rest N99747457eb1b4364a79456eec12ba6ec
    89 N691121dea7a94069aa0691cc0f69b547 rdf:first sg:person.01013563346.76
    90 rdf:rest Nf24911bcbcdd4bebba60f3c140ba1074
    91 N7c4529a649ac47fa8b2342bf568d2cd4 rdf:first sg:person.010545450060.47
    92 rdf:rest N8dea2422ebe64ab2b92233eca2ef401b
    93 N8c15b33c776f4422a9c528000389ffd3 rdf:first sg:person.0745067700.09
    94 rdf:rest N416c97a68dce4ead872d035f7a36521d
    95 N8dea2422ebe64ab2b92233eca2ef401b rdf:first sg:person.01353524352.04
    96 rdf:rest rdf:nil
    97 N991918d98ac849c1807332ebc3ceae7a schema:name dimensions_id
    98 schema:value pub.1004600703
    99 rdf:type schema:PropertyValue
    100 N99747457eb1b4364a79456eec12ba6ec rdf:first sg:person.01311004326.29
    101 rdf:rest N691121dea7a94069aa0691cc0f69b547
    102 Nbc85a8e56f1f477bb64019f41ec89b2e schema:issueNumber 3
    103 rdf:type schema:PublicationIssue
    104 Nbdbaf895c7b342369e085764718220eb schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 Ndbfa88ced7ce412cb9fdc18c03ca6c0d schema:name pubmed_id
    107 schema:value 17310139
    108 rdf:type schema:PropertyValue
    109 Nddb02182f315478ab0206a6961989924 schema:name doi
    110 schema:value 10.1038/nmat1840
    111 rdf:type schema:PropertyValue
    112 Nf24911bcbcdd4bebba60f3c140ba1074 rdf:first sg:person.014406601437.50
    113 rdf:rest N8c15b33c776f4422a9c528000389ffd3
    114 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Chemical Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Physical Chemistry (incl. Structural)
    119 rdf:type schema:DefinedTerm
    120 sg:grant.2759432 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1840
    121 rdf:type schema:MonetaryGrant
    122 sg:journal.1031408 schema:issn 1476-1122
    123 1476-4660
    124 schema:name Nature Materials
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.01013563346.76 schema:affiliation grid-institutes:grid.6936.a
    128 schema:familyName Arenz
    129 schema:givenName Matthias
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013563346.76
    131 rdf:type schema:Person
    132 sg:person.010545450060.47 schema:affiliation grid-institutes:grid.47840.3f
    133 schema:familyName Ross
    134 schema:givenName Philip N.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010545450060.47
    136 rdf:type schema:Person
    137 sg:person.012443453511.65 schema:affiliation grid-institutes:grid.254567.7
    138 schema:familyName Wang
    139 schema:givenName Guofeng
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443453511.65
    141 rdf:type schema:Person
    142 sg:person.01311004326.29 schema:affiliation grid-institutes:grid.49606.3d
    143 schema:familyName Mun
    144 schema:givenName Bongjin Simon
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311004326.29
    146 rdf:type schema:Person
    147 sg:person.01353524352.04 schema:affiliation grid-institutes:grid.187073.a
    148 schema:familyName Markovic
    149 schema:givenName Nenad M.
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353524352.04
    151 rdf:type schema:Person
    152 sg:person.014406601437.50 schema:affiliation grid-institutes:grid.10025.36
    153 schema:familyName Mayrhofer
    154 schema:givenName Karl J. J.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406601437.50
    156 rdf:type schema:Person
    157 sg:person.0657060565.03 schema:affiliation grid-institutes:grid.47840.3f
    158 schema:familyName Stamenkovic
    159 schema:givenName Vojislav R.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657060565.03
    161 rdf:type schema:Person
    162 sg:person.0745067700.09 schema:affiliation grid-institutes:grid.10025.36
    163 schema:familyName Lucas
    164 schema:givenName Christopher A.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745067700.09
    166 rdf:type schema:Person
    167 sg:pub.10.1007/978-1-4613-3584-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041040884
    168 https://doi.org/10.1007/978-1-4613-3584-9_6
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/978-94-015-8911-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043270200
    171 https://doi.org/10.1007/978-94-015-8911-6_11
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1023/a:1011963731898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039931394
    174 https://doi.org/10.1023/a:1011963731898
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/35104599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006186815
    177 https://doi.org/10.1038/35104599
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/35104620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021573346
    180 https://doi.org/10.1038/35104620
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/35104634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000018115
    183 https://doi.org/10.1038/35104634
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nmat1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039029936
    186 https://doi.org/10.1038/nmat1223
    187 rdf:type schema:CreativeWork
    188 grid-institutes:grid.10025.36 schema:alternateName Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK
    189 schema:name Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, UK
    190 rdf:type schema:Organization
    191 grid-institutes:grid.187073.a schema:alternateName Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
    192 schema:name Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
    193 rdf:type schema:Organization
    194 grid-institutes:grid.254567.7 schema:alternateName Department of Chemistry and Physics, University of South Carolina, Aiken, South Carolina 29801, USA
    195 schema:name Department of Chemistry and Physics, University of South Carolina, Aiken, South Carolina 29801, USA
    196 rdf:type schema:Organization
    197 grid-institutes:grid.47840.3f schema:alternateName Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
    198 schema:name Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
    199 Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
    200 rdf:type schema:Organization
    201 grid-institutes:grid.49606.3d schema:alternateName Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, Korea
    202 schema:name Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, Korea
    203 Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
    204 rdf:type schema:Organization
    205 grid-institutes:grid.6936.a schema:alternateName Technical University of Munich, 80333 Munich, Germany
    206 schema:name Technical University of Munich, 80333 Munich, Germany
    207 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...