Orientation selection in dendritic evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-07-09

AUTHORS

Tomorr Haxhimali, Alain Karma, Frédéric Gonzales, Michel Rappaz

ABSTRACT

Dendritic crystal growth patterns have fascinated scientists for several centuries. Much of the aesthetic appeal of these patterns stems from the hierarchical structure of primary-, secondary-, and higher-order branches, which typically grow along principal crystallographic axes. Atypical growth directions have also been observed. Here, we demonstrate both computationally and experimentally that the range of possible dendrite growth directions, and hence the morphological diversity of the resulting dendritic structures, is much richer than previously anticipated. In particular, we show that primary dendrite growth directions can vary continuously between different crystallographic directions as a function of the composition-dependent anisotropy parameters. The study combines phase-field simulations of equiaxed dendritic growth and directional freezing of Al–Zn alloys. Both simulations and experiments exhibit continuous changes of direction from 〈100〉 to 〈110〉 for an underlying cubic symmetry. These results have important implications for controlling the microstructure of a wide range of cast alloys that solidify dendritically. More... »

PAGES

660-664

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1693

DOI

http://dx.doi.org/10.1038/nmat1693

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023047602

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16845416


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 02115, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haxhimali", 
        "givenName": "Tomorr", 
        "id": "sg:person.01356363572.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356363572.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 02115, Boston, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 02115, Boston, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karma", 
        "givenName": "Alain", 
        "id": "sg:person.01213444131.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213444131.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Materials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Computational Materials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzales", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.0667120200.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667120200.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computational Materials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, CH-1015, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Computational Materials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, CH-1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rappaz", 
        "givenName": "Michel", 
        "id": "sg:person.013657516157.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-998-0321-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015245284", 
          "https://doi.org/10.1007/s11661-998-0321-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/343523a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004730035", 
          "https://doi.org/10.1038/343523a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038630959", 
          "https://doi.org/10.1038/nmat749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-997-0097-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044444789", 
          "https://doi.org/10.1007/s11661-997-0097-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-06162-6_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040336169", 
          "https://doi.org/10.1007/978-3-662-06162-6_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015815928191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045404742", 
          "https://doi.org/10.1023/a:1015815928191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015828330917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004705470", 
          "https://doi.org/10.1023/a:1015828330917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/36522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029066927", 
          "https://doi.org/10.1038/36522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02651651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038009992", 
          "https://doi.org/10.1007/bf02651651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02656439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020643883", 
          "https://doi.org/10.1007/bf02656439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053376904", 
          "https://doi.org/10.1038/nmat815"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07-09", 
    "datePublishedReg": "2006-07-09", 
    "description": "Dendritic crystal growth patterns have fascinated scientists for several centuries. Much of the aesthetic appeal of these patterns stems from the hierarchical structure of primary-, secondary-, and higher-order branches, which typically grow along principal crystallographic axes. Atypical growth directions have also been observed. Here, we demonstrate both computationally and experimentally that the range of possible dendrite growth directions, and hence the morphological diversity of the resulting dendritic structures, is much richer than previously anticipated. In particular, we show that primary dendrite growth directions can vary continuously between different crystallographic directions as a function of the composition-dependent anisotropy parameters. The study combines phase-field simulations of equiaxed dendritic growth and directional freezing of Al\u2013Zn alloys. Both simulations and experiments exhibit continuous changes of direction from \u3008100\u3009 to \u3008110\u3009 for an underlying cubic symmetry. These results have important implications for controlling the microstructure of a wide range of cast alloys that solidify dendritically.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nmat1693", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5213141", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8698475", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "important implications", 
      "growth pattern", 
      "principal crystallographic axes", 
      "crystallographic axes", 
      "different crystallographic directions", 
      "crystallographic directions", 
      "anisotropy parameters", 
      "growth", 
      "implications", 
      "century", 
      "appeal", 
      "growth direction", 
      "direction", 
      "phase-field simulations", 
      "cubic symmetry", 
      "dendritic evolution", 
      "patterns", 
      "scientists", 
      "hierarchical structure", 
      "higher order branches", 
      "simulations", 
      "continuous change", 
      "changes", 
      "symmetry", 
      "wide range", 
      "orientation selection", 
      "structure", 
      "axes", 
      "parameters", 
      "study", 
      "results", 
      "selection", 
      "evolution", 
      "crystal growth patterns", 
      "fascinated scientists", 
      "aesthetic appeal", 
      "branches", 
      "range", 
      "diversity", 
      "dendritic structure", 
      "function", 
      "dendritic growth", 
      "experiments", 
      "morphological diversity", 
      "directional freezing", 
      "freezing", 
      "microstructure", 
      "dendrite growth direction", 
      "primary dendrite growth directions", 
      "Al-Zn", 
      "cast"
    ], 
    "name": "Orientation selection in dendritic evolution", 
    "pagination": "660-664", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023047602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1693"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16845416"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1693", 
      "https://app.dimensions.ai/details/publication/pub.1023047602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nmat1693"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1693'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1693'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1693'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1693'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      87 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1693 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd629054add0741f0a3976747ddc6a978
4 schema:citation sg:pub.10.1007/978-3-662-06162-6_20
5 sg:pub.10.1007/bf02651651
6 sg:pub.10.1007/bf02656439
7 sg:pub.10.1007/s11661-997-0097-3
8 sg:pub.10.1007/s11661-998-0321-9
9 sg:pub.10.1023/a:1015815928191
10 sg:pub.10.1023/a:1015828330917
11 sg:pub.10.1038/343523a0
12 sg:pub.10.1038/36522
13 sg:pub.10.1038/nmat749
14 sg:pub.10.1038/nmat815
15 schema:datePublished 2006-07-09
16 schema:datePublishedReg 2006-07-09
17 schema:description Dendritic crystal growth patterns have fascinated scientists for several centuries. Much of the aesthetic appeal of these patterns stems from the hierarchical structure of primary-, secondary-, and higher-order branches, which typically grow along principal crystallographic axes. Atypical growth directions have also been observed. Here, we demonstrate both computationally and experimentally that the range of possible dendrite growth directions, and hence the morphological diversity of the resulting dendritic structures, is much richer than previously anticipated. In particular, we show that primary dendrite growth directions can vary continuously between different crystallographic directions as a function of the composition-dependent anisotropy parameters. The study combines phase-field simulations of equiaxed dendritic growth and directional freezing of Al–Zn alloys. Both simulations and experiments exhibit continuous changes of direction from 〈100〉 to 〈110〉 for an underlying cubic symmetry. These results have important implications for controlling the microstructure of a wide range of cast alloys that solidify dendritically.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N68c8dbd8fc5a4f2280d2eb4254808f81
21 Nd42901c186ae406b9ce10ddb690c4521
22 sg:journal.1031408
23 schema:keywords Al-Zn
24 aesthetic appeal
25 anisotropy parameters
26 appeal
27 axes
28 branches
29 cast
30 century
31 changes
32 continuous change
33 crystal growth patterns
34 crystallographic axes
35 crystallographic directions
36 cubic symmetry
37 dendrite growth direction
38 dendritic evolution
39 dendritic growth
40 dendritic structure
41 different crystallographic directions
42 direction
43 directional freezing
44 diversity
45 evolution
46 experiments
47 fascinated scientists
48 freezing
49 function
50 growth
51 growth direction
52 growth pattern
53 hierarchical structure
54 higher order branches
55 implications
56 important implications
57 microstructure
58 morphological diversity
59 orientation selection
60 parameters
61 patterns
62 phase-field simulations
63 primary dendrite growth directions
64 principal crystallographic axes
65 range
66 results
67 scientists
68 selection
69 simulations
70 structure
71 study
72 symmetry
73 wide range
74 schema:name Orientation selection in dendritic evolution
75 schema:pagination 660-664
76 schema:productId N51bb618a0b1b4929920c653416c949a8
77 N62cbd7c9825342ec8cd871a9372bc607
78 N69be8abbbd034de2b5108bb7e1aac8f7
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023047602
80 https://doi.org/10.1038/nmat1693
81 schema:sdDatePublished 2022-12-01T06:25
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N05cbafcfb539492588913d29eca1a603
84 schema:url https://doi.org/10.1038/nmat1693
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N05cbafcfb539492588913d29eca1a603 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N51bb618a0b1b4929920c653416c949a8 schema:name pubmed_id
91 schema:value 16845416
92 rdf:type schema:PropertyValue
93 N62cbd7c9825342ec8cd871a9372bc607 schema:name dimensions_id
94 schema:value pub.1023047602
95 rdf:type schema:PropertyValue
96 N68c8dbd8fc5a4f2280d2eb4254808f81 schema:issueNumber 8
97 rdf:type schema:PublicationIssue
98 N69be8abbbd034de2b5108bb7e1aac8f7 schema:name doi
99 schema:value 10.1038/nmat1693
100 rdf:type schema:PropertyValue
101 Ncbe8675b4f5740708e89b2a3e19e9d4a rdf:first sg:person.0667120200.67
102 rdf:rest Nf021172acf3d4ee2bb157b76b33c8a04
103 Nd42901c186ae406b9ce10ddb690c4521 schema:volumeNumber 5
104 rdf:type schema:PublicationVolume
105 Nd629054add0741f0a3976747ddc6a978 rdf:first sg:person.01356363572.88
106 rdf:rest Ndb49ba4c2e144f18abe6c22793cea971
107 Ndb49ba4c2e144f18abe6c22793cea971 rdf:first sg:person.01213444131.17
108 rdf:rest Ncbe8675b4f5740708e89b2a3e19e9d4a
109 Nf021172acf3d4ee2bb157b76b33c8a04 rdf:first sg:person.013657516157.10
110 rdf:rest rdf:nil
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
115 schema:name Materials Engineering
116 rdf:type schema:DefinedTerm
117 sg:grant.5213141 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1693
118 rdf:type schema:MonetaryGrant
119 sg:grant.8698475 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1693
120 rdf:type schema:MonetaryGrant
121 sg:journal.1031408 schema:issn 1476-1122
122 1476-4660
123 schema:name Nature Materials
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01213444131.17 schema:affiliation grid-institutes:grid.261112.7
127 schema:familyName Karma
128 schema:givenName Alain
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213444131.17
130 rdf:type schema:Person
131 sg:person.01356363572.88 schema:affiliation grid-institutes:grid.261112.7
132 schema:familyName Haxhimali
133 schema:givenName Tomorr
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356363572.88
135 rdf:type schema:Person
136 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
137 schema:familyName Rappaz
138 schema:givenName Michel
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
140 rdf:type schema:Person
141 sg:person.0667120200.67 schema:affiliation grid-institutes:grid.5333.6
142 schema:familyName Gonzales
143 schema:givenName Frédéric
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667120200.67
145 rdf:type schema:Person
146 sg:pub.10.1007/978-3-662-06162-6_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040336169
147 https://doi.org/10.1007/978-3-662-06162-6_20
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02651651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038009992
150 https://doi.org/10.1007/bf02651651
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf02656439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020643883
153 https://doi.org/10.1007/bf02656439
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11661-997-0097-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444789
156 https://doi.org/10.1007/s11661-997-0097-3
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11661-998-0321-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015245284
159 https://doi.org/10.1007/s11661-998-0321-9
160 rdf:type schema:CreativeWork
161 sg:pub.10.1023/a:1015815928191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045404742
162 https://doi.org/10.1023/a:1015815928191
163 rdf:type schema:CreativeWork
164 sg:pub.10.1023/a:1015828330917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004705470
165 https://doi.org/10.1023/a:1015828330917
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/343523a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004730035
168 https://doi.org/10.1038/343523a0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/36522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029066927
171 https://doi.org/10.1038/36522
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmat749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038630959
174 https://doi.org/10.1038/nmat749
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmat815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053376904
177 https://doi.org/10.1038/nmat815
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.261112.7 schema:alternateName Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 02115, Boston, Massachusetts, USA
180 schema:name Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, 02115, Boston, Massachusetts, USA
181 rdf:type schema:Organization
182 grid-institutes:grid.5333.6 schema:alternateName Computational Materials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015, Lausanne, Switzerland
183 schema:name Computational Materials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015, Lausanne, Switzerland
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...