Dynamic plasticity and failure of high-purity alumina under shock loading View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07-02

AUTHORS

M. W. Chen, J. W. McCauley, D. P. Dandekar, N. K. Bourne

ABSTRACT

Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics1,2,3,4. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes. More... »

PAGES

614-618

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1689

DOI

http://dx.doi.org/10.1038/nmat1689

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051162901

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16845418


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "M. W.", 
        "id": "sg:person.015125211260.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Army Research Laboratory, Aberdeen Proving Ground, 21005, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.420282.e", 
          "name": [
            "US Army Research Laboratory, Aberdeen Proving Ground, 21005, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCauley", 
        "givenName": "J. W.", 
        "id": "sg:person.01271304731.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271304731.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Army Research Laboratory, Aberdeen Proving Ground, 21005, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.420282.e", 
          "name": [
            "US Army Research Laboratory, Aberdeen Proving Ground, 21005, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dandekar", 
        "givenName": "D. P.", 
        "id": "sg:person.016443514551.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443514551.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester, PO Box 88, Sackville Street, M60 1QD, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "University of Manchester, PO Box 88, Sackville Street, M60 1QD, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourne", 
        "givenName": "N. K.", 
        "id": "sg:person.014076761027.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076761027.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023752051", 
          "https://doi.org/10.1038/nmat1072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4282-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041818458", 
          "https://doi.org/10.1007/978-1-4757-4282-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07-02", 
    "datePublishedReg": "2006-07-02", 
    "description": "Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics1,2,3,4. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nmat1689", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "Hugoniot elastic limit", 
      "high-purity alumina", 
      "shock loading", 
      "significant inelastic strains", 
      "conventional loading conditions", 
      "high performance ceramics", 
      "higher failure strength", 
      "dynamic mechanical properties", 
      "shock-loading experiments", 
      "intergranular mode", 
      "transgranular cleavage", 
      "deformation behavior", 
      "preferred cleavage plane", 
      "inelastic strain", 
      "failure strength", 
      "mechanical properties", 
      "deformation twinning", 
      "material failure", 
      "loading conditions", 
      "dislocation activity", 
      "impact pressure", 
      "inelastic response", 
      "grain boundaries", 
      "deformation modes", 
      "elastic limit", 
      "high-resolution electron microscopy", 
      "loading", 
      "important parameters", 
      "electron microscopy", 
      "alumina", 
      "dynamic plasticity", 
      "cleavage plane", 
      "micromechanisms", 
      "ceramics", 
      "transition point", 
      "mode", 
      "twinning", 
      "interface", 
      "strength", 
      "microscopy", 
      "properties", 
      "boundaries", 
      "parameters", 
      "failure", 
      "pressure", 
      "vicinity", 
      "plane", 
      "behavior", 
      "conversion", 
      "characterization", 
      "conditions", 
      "experiments", 
      "limit", 
      "strains", 
      "point", 
      "evolution", 
      "plasticity", 
      "changes", 
      "response", 
      "activity", 
      "years", 
      "cleavage"
    ], 
    "name": "Dynamic plasticity and failure of high-purity alumina under shock loading", 
    "pagination": "614-618", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051162901"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1689"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16845418"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1689", 
      "https://app.dimensions.ai/details/publication/pub.1051162901"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_411.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nmat1689"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1689'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1689'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1689'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1689'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      89 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1689 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf270efa008e84250a40d47f18fa113c5
4 schema:citation sg:pub.10.1007/978-1-4757-4282-4
5 sg:pub.10.1038/nmat1072
6 schema:datePublished 2006-07-02
7 schema:datePublishedReg 2006-07-02
8 schema:description Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics1,2,3,4. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N5d65d5a1ec9c4dec8cd9e06a5d641aa7
12 Nad143b760f864b2fb39eca283f14f299
13 sg:journal.1031408
14 schema:keywords Hugoniot elastic limit
15 activity
16 alumina
17 behavior
18 boundaries
19 ceramics
20 changes
21 characterization
22 cleavage
23 cleavage plane
24 conditions
25 conventional loading conditions
26 conversion
27 deformation behavior
28 deformation modes
29 deformation twinning
30 dislocation activity
31 dynamic mechanical properties
32 dynamic plasticity
33 elastic limit
34 electron microscopy
35 evolution
36 experiments
37 failure
38 failure strength
39 grain boundaries
40 high performance ceramics
41 high-purity alumina
42 high-resolution electron microscopy
43 higher failure strength
44 impact pressure
45 important parameters
46 inelastic response
47 inelastic strain
48 interface
49 intergranular mode
50 limit
51 loading
52 loading conditions
53 material failure
54 mechanical properties
55 micromechanisms
56 microscopy
57 mode
58 parameters
59 plane
60 plasticity
61 point
62 preferred cleavage plane
63 pressure
64 properties
65 response
66 shock loading
67 shock-loading experiments
68 significant inelastic strains
69 strains
70 strength
71 transgranular cleavage
72 transition point
73 twinning
74 vicinity
75 years
76 schema:name Dynamic plasticity and failure of high-purity alumina under shock loading
77 schema:pagination 614-618
78 schema:productId N1a9d962bd98d4cf0a7ab2da9f4be10e9
79 N2bfd88f52e0f40f59340f2939bac1715
80 Nb2ceee793a2242068290d2a081171509
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051162901
82 https://doi.org/10.1038/nmat1689
83 schema:sdDatePublished 2022-11-24T20:52
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Nb3884d159bdd4b20a00cd2402103c251
86 schema:url https://doi.org/10.1038/nmat1689
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N1a9d962bd98d4cf0a7ab2da9f4be10e9 schema:name pubmed_id
91 schema:value 16845418
92 rdf:type schema:PropertyValue
93 N2bfd88f52e0f40f59340f2939bac1715 schema:name doi
94 schema:value 10.1038/nmat1689
95 rdf:type schema:PropertyValue
96 N4fb682871c2b49e6a1d3ae6da6cc7b35 rdf:first sg:person.014076761027.31
97 rdf:rest rdf:nil
98 N571685db270846a3b276ca23e5e122cf rdf:first sg:person.016443514551.81
99 rdf:rest N4fb682871c2b49e6a1d3ae6da6cc7b35
100 N5d65d5a1ec9c4dec8cd9e06a5d641aa7 schema:volumeNumber 5
101 rdf:type schema:PublicationVolume
102 Nad143b760f864b2fb39eca283f14f299 schema:issueNumber 8
103 rdf:type schema:PublicationIssue
104 Nb2ceee793a2242068290d2a081171509 schema:name dimensions_id
105 schema:value pub.1051162901
106 rdf:type schema:PropertyValue
107 Nb3884d159bdd4b20a00cd2402103c251 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nf270efa008e84250a40d47f18fa113c5 rdf:first sg:person.015125211260.19
110 rdf:rest Nffd8a9f4bbd64a69855189d49b222794
111 Nffd8a9f4bbd64a69855189d49b222794 rdf:first sg:person.01271304731.38
112 rdf:rest N571685db270846a3b276ca23e5e122cf
113 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
114 schema:name Engineering
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
117 schema:name Materials Engineering
118 rdf:type schema:DefinedTerm
119 sg:journal.1031408 schema:issn 1476-1122
120 1476-4660
121 schema:name Nature Materials
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.01271304731.38 schema:affiliation grid-institutes:grid.420282.e
125 schema:familyName McCauley
126 schema:givenName J. W.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271304731.38
128 rdf:type schema:Person
129 sg:person.014076761027.31 schema:affiliation grid-institutes:grid.5379.8
130 schema:familyName Bourne
131 schema:givenName N. K.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076761027.31
133 rdf:type schema:Person
134 sg:person.015125211260.19 schema:affiliation grid-institutes:grid.21107.35
135 schema:familyName Chen
136 schema:givenName M. W.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015125211260.19
138 rdf:type schema:Person
139 sg:person.016443514551.81 schema:affiliation grid-institutes:grid.420282.e
140 schema:familyName Dandekar
141 schema:givenName D. P.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443514551.81
143 rdf:type schema:Person
144 sg:pub.10.1007/978-1-4757-4282-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041818458
145 https://doi.org/10.1007/978-1-4757-4282-4
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nmat1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023752051
148 https://doi.org/10.1038/nmat1072
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.21107.35 schema:alternateName Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA
151 schema:name Department of Mechanical Engineering, Johns Hopkins University, 21218, Baltimore, Maryland, USA
152 Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
153 rdf:type schema:Organization
154 grid-institutes:grid.420282.e schema:alternateName US Army Research Laboratory, Aberdeen Proving Ground, 21005, Maryland, USA
155 schema:name US Army Research Laboratory, Aberdeen Proving Ground, 21005, Maryland, USA
156 rdf:type schema:Organization
157 grid-institutes:grid.5379.8 schema:alternateName University of Manchester, PO Box 88, Sackville Street, M60 1QD, Manchester, UK
158 schema:name University of Manchester, PO Box 88, Sackville Street, M60 1QD, Manchester, UK
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...