Large enhancement of the thermopower in NaxCoO2 at high Na doping View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-07

AUTHORS

Minhyea Lee, Liliana Viciu, Lu Li, Yayu Wang, M. L. Foo, S. Watauchi, R. A. Pascal, R. J. Cava, N. P. Ong

ABSTRACT

Research on the oxide perovskites has uncovered electronic properties that are strikingly enhanced compared with those in conventional metals. Examples are the high critical temperatures of the cuprate superconductors and the colossal magnetoresistance in the manganites. The conducting layered cobaltate Na(x)CoO2 exhibits several interesting electronic phases as the Na content x is varied, including water-induced superconductivity and an insulating state that is destroyed by field. Initial measurements showed that, in the as-grown composition, Na(x)CoO2 has moderately large thermopower S and conductivity sigma. However, the prospects for thermoelectric cooling applications faded when the figure of merit Z was found to be small at this composition (0.60.75, S undergoes an even steeper enhancement. At the critical doping x(p) approximately 0.85, Z (at 80 K) reaches values approximately 40 times larger than in the as-grown crystals. We discuss prospects for low-temperature thermoelectric applications. More... »

PAGES

537

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1669

DOI

http://dx.doi.org/10.1038/nmat1669

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035315508

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16767094


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Minhyea", 
        "id": "sg:person.0642651216.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642651216.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viciu", 
        "givenName": "Liliana", 
        "id": "sg:person.0632172133.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632172133.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lu", 
        "id": "sg:person.014005016641.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005016641.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yayu", 
        "id": "sg:person.0635640376.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foo", 
        "givenName": "M. L.", 
        "id": "sg:person.01121035672.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121035672.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watauchi", 
        "givenName": "S.", 
        "id": "sg:person.01151712026.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151712026.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pascal", 
        "givenName": "R. A.", 
        "id": "sg:person.01177224727.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177224727.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cava", 
        "givenName": "R. J.", 
        "id": "sg:person.010442672302.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442672302.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics, Princeton University, Princeton, New Jersey 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ong", 
        "givenName": "N. P.", 
        "id": "sg:person.0671345634.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671345634.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.93.167003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001718669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.167003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001718669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.017602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002908747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.017602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002908747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003594742", 
          "https://doi.org/10.1038/nature01450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.100410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015897597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.100410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015897597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.247001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018103064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.247001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018103064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5455.1024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023134520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.186405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025380566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.186405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025380566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028805599", 
          "https://doi.org/10.1038/nature01639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028805599", 
          "https://doi.org/10.1038/nature01639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.136403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033203814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.136403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033203814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.184110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.184110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039346027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.157205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042783556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.157205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042783556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.094404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048151365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.094404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048151365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.094404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048151365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(72)90173-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052689007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(72)90173-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052689007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052967212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052967212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.r12685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.r12685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.236603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.236603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.236402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.236402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830495"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "Research on the oxide perovskites has uncovered electronic properties that are strikingly enhanced compared with those in conventional metals. Examples are the high critical temperatures of the cuprate superconductors and the colossal magnetoresistance in the manganites. The conducting layered cobaltate Na(x)CoO2 exhibits several interesting electronic phases as the Na content x is varied, including water-induced superconductivity and an insulating state that is destroyed by field. Initial measurements showed that, in the as-grown composition, Na(x)CoO2 has moderately large thermopower S and conductivity sigma. However, the prospects for thermoelectric cooling applications faded when the figure of merit Z was found to be small at this composition (0.60.75, S undergoes an even steeper enhancement. At the critical doping x(p) approximately 0.85, Z (at 80 K) reaches values approximately 40 times larger than in the as-grown crystals. We discuss prospects for low-temperature thermoelectric applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1669", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3028400", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4396967", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Large enhancement of the thermopower in NaxCoO2 at high Na doping", 
    "pagination": "537", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a839ff1c20f4821261d3335bd8215b7842c99916218e5d050c74c3a3695fd700"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16767094"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1669"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035315508"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1669", 
      "https://app.dimensions.ai/details/publication/pub.1035315508"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29219_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nmat1669"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1669'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1669'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1669'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1669'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1669 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N367a8c3fc84b45858b1ead8f09475d15
4 schema:citation sg:pub.10.1038/nature01450
5 sg:pub.10.1038/nature01639
6 https://doi.org/10.1016/0038-1101(72)90173-6
7 https://doi.org/10.1103/physrevb.13.647
8 https://doi.org/10.1103/physrevb.56.r12685
9 https://doi.org/10.1103/physrevb.69.100410
10 https://doi.org/10.1103/physrevb.70.184110
11 https://doi.org/10.1103/physrevb.72.094404
12 https://doi.org/10.1103/physrevb.73.174104
13 https://doi.org/10.1103/physrevlett.87.236603
14 https://doi.org/10.1103/physrevlett.92.017602
15 https://doi.org/10.1103/physrevlett.92.247001
16 https://doi.org/10.1103/physrevlett.93.167003
17 https://doi.org/10.1103/physrevlett.94.136403
18 https://doi.org/10.1103/physrevlett.94.157205
19 https://doi.org/10.1103/physrevlett.94.236402
20 https://doi.org/10.1103/physrevlett.95.186405
21 https://doi.org/10.1126/science.287.5455.1024
22 schema:datePublished 2006-07
23 schema:datePublishedReg 2006-07-01
24 schema:description Research on the oxide perovskites has uncovered electronic properties that are strikingly enhanced compared with those in conventional metals. Examples are the high critical temperatures of the cuprate superconductors and the colossal magnetoresistance in the manganites. The conducting layered cobaltate Na(x)CoO2 exhibits several interesting electronic phases as the Na content x is varied, including water-induced superconductivity and an insulating state that is destroyed by field. Initial measurements showed that, in the as-grown composition, Na(x)CoO2 has moderately large thermopower S and conductivity sigma. However, the prospects for thermoelectric cooling applications faded when the figure of merit Z was found to be small at this composition (0.6<x<0.7). Here we report that, in the poorly explored high-doping region x>0.75, S undergoes an even steeper enhancement. At the critical doping x(p) approximately 0.85, Z (at 80 K) reaches values approximately 40 times larger than in the as-grown crystals. We discuss prospects for low-temperature thermoelectric applications.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N8226e7610f2d453f97e8dcbe381c22d2
29 Na90534827ee44908a275ecdc6edabfb1
30 sg:journal.1031408
31 schema:name Large enhancement of the thermopower in NaxCoO2 at high Na doping
32 schema:pagination 537
33 schema:productId N5016f227b5c3456fbb5c0558c129d7d0
34 N6972152c8c264a97921d5e818ee67877
35 N6d066937035b40c69eb8be3935ec81e7
36 N8ca3b5a52a3e4ab988d144010e801091
37 Nc1268dad5a174be5a687199a7c051403
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035315508
39 https://doi.org/10.1038/nmat1669
40 schema:sdDatePublished 2019-04-11T11:57
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Ned2428caf15e4ad2be6d5534170c1247
43 schema:url https://www.nature.com/articles/nmat1669
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N367a8c3fc84b45858b1ead8f09475d15 rdf:first sg:person.0642651216.27
48 rdf:rest Ne344513317604475b93f89af9503058e
49 N4bd13aabba73451d941413e73f8f4892 rdf:first sg:person.01121035672.46
50 rdf:rest N9464e91d7f66475e845b6f47e59bc23b
51 N5016f227b5c3456fbb5c0558c129d7d0 schema:name pubmed_id
52 schema:value 16767094
53 rdf:type schema:PropertyValue
54 N5757edc0db374d6c9c97c46514f02d34 rdf:first sg:person.01177224727.47
55 rdf:rest Ndbeb109ce7174c72b242975615e71769
56 N6972152c8c264a97921d5e818ee67877 schema:name nlm_unique_id
57 schema:value 101155473
58 rdf:type schema:PropertyValue
59 N6d066937035b40c69eb8be3935ec81e7 schema:name doi
60 schema:value 10.1038/nmat1669
61 rdf:type schema:PropertyValue
62 N8226e7610f2d453f97e8dcbe381c22d2 schema:issueNumber 7
63 rdf:type schema:PublicationIssue
64 N8ca3b5a52a3e4ab988d144010e801091 schema:name dimensions_id
65 schema:value pub.1035315508
66 rdf:type schema:PropertyValue
67 N8e8e4cb5545943e2bcb322eefe10f543 rdf:first sg:person.0635640376.17
68 rdf:rest N4bd13aabba73451d941413e73f8f4892
69 N9464e91d7f66475e845b6f47e59bc23b rdf:first sg:person.01151712026.09
70 rdf:rest N5757edc0db374d6c9c97c46514f02d34
71 N98fecece6a3d47f38ee9c17d8d194a70 rdf:first sg:person.014005016641.38
72 rdf:rest N8e8e4cb5545943e2bcb322eefe10f543
73 Na90534827ee44908a275ecdc6edabfb1 schema:volumeNumber 5
74 rdf:type schema:PublicationVolume
75 Nc1268dad5a174be5a687199a7c051403 schema:name readcube_id
76 schema:value a839ff1c20f4821261d3335bd8215b7842c99916218e5d050c74c3a3695fd700
77 rdf:type schema:PropertyValue
78 Ndbeb109ce7174c72b242975615e71769 rdf:first sg:person.010442672302.90
79 rdf:rest Ne1ba35e6e423447597e7314c2913d64e
80 Ne1ba35e6e423447597e7314c2913d64e rdf:first sg:person.0671345634.41
81 rdf:rest rdf:nil
82 Ne344513317604475b93f89af9503058e rdf:first sg:person.0632172133.89
83 rdf:rest N98fecece6a3d47f38ee9c17d8d194a70
84 Ned2428caf15e4ad2be6d5534170c1247 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
90 schema:name Materials Engineering
91 rdf:type schema:DefinedTerm
92 sg:grant.3028400 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1669
93 rdf:type schema:MonetaryGrant
94 sg:grant.4396967 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1669
95 rdf:type schema:MonetaryGrant
96 sg:journal.1031408 schema:issn 1476-1122
97 1476-4660
98 schema:name Nature Materials
99 rdf:type schema:Periodical
100 sg:person.010442672302.90 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
101 schema:familyName Cava
102 schema:givenName R. J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442672302.90
104 rdf:type schema:Person
105 sg:person.01121035672.46 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
106 schema:familyName Foo
107 schema:givenName M. L.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121035672.46
109 rdf:type schema:Person
110 sg:person.01151712026.09 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
111 schema:familyName Watauchi
112 schema:givenName S.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151712026.09
114 rdf:type schema:Person
115 sg:person.01177224727.47 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
116 schema:familyName Pascal
117 schema:givenName R. A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177224727.47
119 rdf:type schema:Person
120 sg:person.014005016641.38 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
121 schema:familyName Li
122 schema:givenName Lu
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005016641.38
124 rdf:type schema:Person
125 sg:person.0632172133.89 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
126 schema:familyName Viciu
127 schema:givenName Liliana
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632172133.89
129 rdf:type schema:Person
130 sg:person.0635640376.17 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
131 schema:familyName Wang
132 schema:givenName Yayu
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635640376.17
134 rdf:type schema:Person
135 sg:person.0642651216.27 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
136 schema:familyName Lee
137 schema:givenName Minhyea
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642651216.27
139 rdf:type schema:Person
140 sg:person.0671345634.41 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
141 schema:familyName Ong
142 schema:givenName N. P.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671345634.41
144 rdf:type schema:Person
145 sg:pub.10.1038/nature01450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003594742
146 https://doi.org/10.1038/nature01450
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature01639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028805599
149 https://doi.org/10.1038/nature01639
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0038-1101(72)90173-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052689007
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.13.647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521256
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.56.r12685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586929
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.69.100410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015897597
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.70.184110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039346027
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.72.094404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048151365
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.73.174104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052967212
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.87.236603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824081
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.92.017602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002908747
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.92.247001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018103064
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.93.167003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001718669
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.94.136403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033203814
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.94.157205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042783556
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.94.236402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830495
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.95.186405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025380566
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.287.5455.1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023134520
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
184 schema:name Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
185 Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...