Kinetically driven self assembly of highly ordered nanoparticle monolayers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-04

AUTHORS

Terry P Bigioni, Xiao-Min Lin, Toan T Nguyen, Eric I Corwin, Thomas A Witten, Heinrich M Jaeger

ABSTRACT

When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media. More... »

PAGES

265-270

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1611

DOI

http://dx.doi.org/10.1038/nmat1611

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033027433

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16547519


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Transmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Video", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanostructures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Particle Size", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bigioni", 
        "givenName": "Terry P", 
        "id": "sg:person.01007164207.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007164207.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Lin", 
        "givenName": "Xiao-Min", 
        "id": "sg:person.01267452117.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267452117.94"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Nguyen", 
        "givenName": "Toan T", 
        "id": "sg:person.01201022457.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201022457.51"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Corwin", 
        "givenName": "Eric I", 
        "id": "sg:person.01111470237.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111470237.98"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Witten", 
        "givenName": "Thomas A", 
        "id": "sg:person.01176156165.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176156165.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Jaeger", 
        "givenName": "Heinrich M", 
        "id": "sg:person.01252327714.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1146/annurev.physchem.49.1.371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000818981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000839912", 
          "https://doi.org/10.1038/nature02087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000839912", 
          "https://doi.org/10.1038/nature02087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0039520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008399641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0039520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008399641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1971.0071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0341761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023584898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0341761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023584898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1074868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031457308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037847007", 
          "https://doi.org/10.1038/39827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/39827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037847007", 
          "https://doi.org/10.1038/39827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0102062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038281855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0102062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038281855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047651843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.135503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047651843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-4095(199801)10:1<13::aid-adma13>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048775194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp002280a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056043725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp002280a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056043725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp014559c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056048488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp014559c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056048488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.45.569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1492548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062167632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1078616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062447144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5240.1335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1997-00468-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04", 
    "datePublishedReg": "2006-04-01", 
    "description": "When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1611", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3028404", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Kinetically driven self assembly of highly ordered nanoparticle monolayers", 
    "pagination": "265-270", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9d5680ddb08608e008466ca4e82364913f23a8f3c9eac047378f60851157436d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16547519"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1611"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033027433"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1611", 
      "https://app.dimensions.ai/details/publication/pub.1033027433"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29219_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmat/journal/v5/n4/full/nmat1611.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1611'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1611'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1611'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1611'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      59 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1611 schema:about N0b5fba3d4d994ca09b047c00d448c878
2 N226773ff61e5401181da92b4e55fac76
3 N3b7aa09e0b2c44d5b9d0221bb8aee79f
4 N5acd2e7abbb04da78a1d3568641c5983
5 N6bca70430f9d4c6397b42eec6739bcec
6 N9e42cdb088e2402380dfb2bbbf481f01
7 Na35f707910104847bce4aa3d633cebd0
8 Nc868e08ec94c499988dc8bd3ececd44d
9 Nd40a3486ce364e0b8e4666679d4fca1b
10 Nec1269d9d6994cca8b4896773896f9d5
11 anzsrc-for:03
12 anzsrc-for:0306
13 schema:author Nc52770ac3f1840e4b98faed29b07a4af
14 schema:citation sg:pub.10.1038/39827
15 sg:pub.10.1038/nature02087
16 https://doi.org/10.1002/(sici)1521-4095(199801)10:1<13::aid-adma13>3.0.co;2-w
17 https://doi.org/10.1021/jp002280a
18 https://doi.org/10.1021/jp0039520
19 https://doi.org/10.1021/jp0102062
20 https://doi.org/10.1021/jp014559c
21 https://doi.org/10.1021/la0341761
22 https://doi.org/10.1098/rspa.1971.0071
23 https://doi.org/10.1103/physreve.62.756
24 https://doi.org/10.1103/physrevlett.45.569
25 https://doi.org/10.1103/physrevlett.75.3466
26 https://doi.org/10.1103/physrevlett.80.3531
27 https://doi.org/10.1103/physrevlett.93.135503
28 https://doi.org/10.1116/1.1492548
29 https://doi.org/10.1126/science.1074868
30 https://doi.org/10.1126/science.1078616
31 https://doi.org/10.1126/science.270.5240.1335
32 https://doi.org/10.1146/annurev.physchem.49.1.371
33 https://doi.org/10.1209/epl/i1997-00468-4
34 schema:datePublished 2006-04
35 schema:datePublishedReg 2006-04-01
36 schema:description When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N064df3a2733a4d1aad46367d71af607b
41 N0cd85a696d3f4891a956f96851cec37e
42 sg:journal.1031408
43 schema:name Kinetically driven self assembly of highly ordered nanoparticle monolayers
44 schema:pagination 265-270
45 schema:productId N23a69f0b8a7b4fe5b4568dc97e96fdf6
46 Na93ba9ed9f484774a3fd2db6ce840af2
47 Nd88edae211074790b779829722e29f60
48 Nd90ac9b3260740c8b093a4bb9aa436dc
49 Nd96d39f3806744f7a3b1099750795a5d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027433
51 https://doi.org/10.1038/nmat1611
52 schema:sdDatePublished 2019-04-11T11:57
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Na10ee93b3ada48a3b71b8fe01bc977f4
55 schema:url http://www.nature.com/nmat/journal/v5/n4/full/nmat1611.html
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N064df3a2733a4d1aad46367d71af607b schema:issueNumber 4
60 rdf:type schema:PublicationIssue
61 N0b5fba3d4d994ca09b047c00d448c878 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Microscopy, Video
63 rdf:type schema:DefinedTerm
64 N0cd85a696d3f4891a956f96851cec37e schema:volumeNumber 5
65 rdf:type schema:PublicationVolume
66 N226773ff61e5401181da92b4e55fac76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Particle Size
68 rdf:type schema:DefinedTerm
69 N23a69f0b8a7b4fe5b4568dc97e96fdf6 schema:name readcube_id
70 schema:value 9d5680ddb08608e008466ca4e82364913f23a8f3c9eac047378f60851157436d
71 rdf:type schema:PropertyValue
72 N3b7aa09e0b2c44d5b9d0221bb8aee79f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Kinetics
74 rdf:type schema:DefinedTerm
75 N40082392ed904ce8ab658073ec4b2a80 rdf:first sg:person.01252327714.89
76 rdf:rest rdf:nil
77 N51e290842d534501bb65bcf3848cd706 rdf:first sg:person.01201022457.51
78 rdf:rest N6bf193f8f77743b18da94426dc6fead1
79 N5acd2e7abbb04da78a1d3568641c5983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Magnetics
81 rdf:type schema:DefinedTerm
82 N6bca70430f9d4c6397b42eec6739bcec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Colloids
84 rdf:type schema:DefinedTerm
85 N6bf193f8f77743b18da94426dc6fead1 rdf:first sg:person.01111470237.98
86 rdf:rest N948e74a27d844c2b9cdb330e52b7d681
87 N948e74a27d844c2b9cdb330e52b7d681 rdf:first sg:person.01176156165.31
88 rdf:rest N40082392ed904ce8ab658073ec4b2a80
89 N9e42cdb088e2402380dfb2bbbf481f01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Surface Properties
91 rdf:type schema:DefinedTerm
92 Na10ee93b3ada48a3b71b8fe01bc977f4 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Na35f707910104847bce4aa3d633cebd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Time Factors
96 rdf:type schema:DefinedTerm
97 Na93ba9ed9f484774a3fd2db6ce840af2 schema:name pubmed_id
98 schema:value 16547519
99 rdf:type schema:PropertyValue
100 Nba5af271b52b457f8589438697f2d03a schema:name James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
101 rdf:type schema:Organization
102 Nc52770ac3f1840e4b98faed29b07a4af rdf:first sg:person.01007164207.31
103 rdf:rest Ne2f072afbf144795b68d5faf37e4d7db
104 Nc868e08ec94c499988dc8bd3ececd44d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Microscopy, Electron, Transmission
106 rdf:type schema:DefinedTerm
107 Nd40a3486ce364e0b8e4666679d4fca1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Nanostructures
109 rdf:type schema:DefinedTerm
110 Nd88edae211074790b779829722e29f60 schema:name nlm_unique_id
111 schema:value 101155473
112 rdf:type schema:PropertyValue
113 Nd90ac9b3260740c8b093a4bb9aa436dc schema:name doi
114 schema:value 10.1038/nmat1611
115 rdf:type schema:PropertyValue
116 Nd96d39f3806744f7a3b1099750795a5d schema:name dimensions_id
117 schema:value pub.1033027433
118 rdf:type schema:PropertyValue
119 Ne2f072afbf144795b68d5faf37e4d7db rdf:first sg:person.01267452117.94
120 rdf:rest N51e290842d534501bb65bcf3848cd706
121 Nec1269d9d6994cca8b4896773896f9d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Nanotechnology
123 rdf:type schema:DefinedTerm
124 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
125 schema:name Chemical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
128 schema:name Physical Chemistry (incl. Structural)
129 rdf:type schema:DefinedTerm
130 sg:grant.3028404 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1611
131 rdf:type schema:MonetaryGrant
132 sg:journal.1031408 schema:issn 1476-1122
133 1476-4660
134 schema:name Nature Materials
135 rdf:type schema:Periodical
136 sg:person.01007164207.31 schema:affiliation Nba5af271b52b457f8589438697f2d03a
137 schema:familyName Bigioni
138 schema:givenName Terry P
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007164207.31
140 rdf:type schema:Person
141 sg:person.01111470237.98 schema:familyName Corwin
142 schema:givenName Eric I
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111470237.98
144 rdf:type schema:Person
145 sg:person.01176156165.31 schema:familyName Witten
146 schema:givenName Thomas A
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176156165.31
148 rdf:type schema:Person
149 sg:person.01201022457.51 schema:familyName Nguyen
150 schema:givenName Toan T
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201022457.51
152 rdf:type schema:Person
153 sg:person.01252327714.89 schema:familyName Jaeger
154 schema:givenName Heinrich M
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252327714.89
156 rdf:type schema:Person
157 sg:person.01267452117.94 schema:familyName Lin
158 schema:givenName Xiao-Min
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267452117.94
160 rdf:type schema:Person
161 sg:pub.10.1038/39827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037847007
162 https://doi.org/10.1038/39827
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature02087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000839912
165 https://doi.org/10.1038/nature02087
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/(sici)1521-4095(199801)10:1<13::aid-adma13>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1048775194
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/jp002280a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056043725
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/jp0039520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008399641
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/jp0102062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038281855
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1021/jp014559c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056048488
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/la0341761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023584898
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1098/rspa.1971.0071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022025503
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreve.62.756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725980
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.45.569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785707
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.75.3466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812075
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.80.3531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817299
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.93.135503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047651843
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1116/1.1492548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062167632
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1074868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031457308
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.1078616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447144
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.270.5240.1335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551679
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1146/annurev.physchem.49.1.371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000818981
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1209/epl/i1997-00468-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234945
202 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...