Current-induced magnetization reversal in nanopillars with perpendicular anisotropy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-03

AUTHORS

S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, Eric E. Fullerton

ABSTRACT

Devices that show a magnetic anisotropy normal to the film surface hold great promise towards faster and smaller magnetic bits in data-storage applications. We describe an experimental demonstration of current-induced magnetic reversal of nanopillars with perpendicular anisotropy and high coercive fields. The best results are observed for Co/Ni multilayers, which have higher giant magnetoresistance values and spin-torque efficiencies than Co/Pt multilayers. The reference layers were designed to have significantly higher anisotropy allowing a complete current–field phase diagram of the free-layer reversal to be explored. The results are compared to micromagnetic modelling of the free layer that, depending on the bias current and applied field, details regions of irreversible magnetic switching, coherent and incoherent spin waves, or static non-uniform magnetization states. This ability to manipulate high-anisotropy magnetic elements could prove useful for a range of spintronic applications. More... »

PAGES

210-215

Journal

TITLE

Nature Materials

ISSUE

3

VOLUME

5

Related Patents

  • Magnetic Memory Cell Construction
  • Memory Element And Memory Apparatus With A Plurality Of Magnetic Layers And An Oxide Layer
  • Storage Element And Storage Device
  • Magnetic Element
  • High Thermal Stability Free Layer With High Out-Of-Plane Anisotropy For Magnetic Device Applications
  • Magnetic Memory Sensing Circuit
  • Memory Element And Memory Apparatus
  • Magnetic Stack Having Assist Layer
  • Non-Volatile Memory With Stray Magnetic Field Compensation
  • Semiconductor Storage Device And Method Of Manufacturing The Same
  • Memory Element And Memory Apparatus
  • Magnetoresistance Effect Element And Magnetic Memory
  • Information Storage Devices Using Magnetic Domain Wall Movement
  • Memory Element, Memory Apparatus
  • Storage Element And Storage Device
  • Heat Assisted Magnetic Write Element
  • Method For Manufacturing Non-Volatile Magnetic Memory
  • Storage Element And Storage Device
  • Magnetic Memory Cell Construction
  • High Thermal Stability Reference Structure With Out-Of-Plane Aniotropy To Magnetic Device Applications
  • Non-Volatile Memory With Stray Magnetic Field Compensation
  • Low Resistance High-Tmr Magnetic Tunnel Junction And Process For Fabrication Thereof
  • Multilayer Structure With High Perpendicular Anisotropy For Device Applications
  • Method Of Switching Out-Of-Plane Magnetic Tunnel Junction Cells
  • Magnetoresistance Effect Element And Magnetic Memory
  • Memory Element And Memory Apparatus
  • Magnetoresistance Effect Element And Magnetic Memory
  • All-Spin Logic Devices
  • Storage Cell, Storage Device, And Magnetic Head
  • Magnetic Random Access Memory And Write Method Of The Same
  • Mtj Incorporating Cofe/Ni Multilayer Film With Perpendicular Magnetic Anisotropy For Mram Application
  • Magnetic Stack Having Assist Layers
  • Magnetic Stack Having Assist Layer
  • Magnetic Memory Cell Construction
  • Current-Confined Effect Of Magnetic Nano-Current-Channel (Ncc) For Magnetic Random Access Memory (Mram)
  • Storage Element, Storage Apparatus, And Magnetic Head
  • Method Of Switching Out-Of-Plane Magnetic Tunnel Junction Cells
  • Storage Element, Storage Device, And Magnetic Head
  • Magnetoresistive Element And Magnetic Memory
  • Thin Seeded Co/Ni Multilayer Film With Perpendicular Anisotropy For Read Head Sensor Stabilization
  • Non-Volatile Memory With Stray Magnetic Field Compensation
  • Memory Element, Memory Apparatus
  • Storage Element And Storage Device
  • Method For Manufacturing High Density Non-Volatile Magnetic Memory
  • Free Layer With High Thermal Stability For Magnetic Device Applications By Insertion Of A Boron Dusting Layer
  • St-Ram Cells With Perpendicular Anisotropy
  • Memory Element And Memory Apparatus With A Plurality Of Magnetic Layers And An Oxide Layer
  • Non-Volatile Memory With Stray Magnetic Field Compensation
  • Assisting Fgl Oscillations With Perpendicular Anisotropy For Mamr
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat1595

    DOI

    http://dx.doi.org/10.1038/nmat1595

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042288684


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hitachi Global Storage Technologies (United States)", 
              "id": "https://www.grid.ac/institutes/grid.450890.0", 
              "name": [
                "Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA", 
                "Laboratoire de Physique de Mat\u00e9riaux, UMR CNRS 7556, U.H.P.-Nancy I, B.P.\u00a0239 F-54506 Vandoeuvre cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mangin", 
            "givenName": "S.", 
            "id": "sg:person.0775343267.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775343267.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut d'Electronique Fondamentale", 
              "id": "https://www.grid.ac/institutes/grid.462111.1", 
              "name": [
                "Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA", 
                "Institut d\u2019Electronique Fondamentale, UMR CNRS 8622, Universit\u00e9 Paris Sud, 91405 Orsay Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ravelosona", 
            "givenName": "D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hitachi Global Storage Technologies (United States)", 
              "id": "https://www.grid.ac/institutes/grid.450890.0", 
              "name": [
                "Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Katine", 
            "givenName": "J. A.", 
            "id": "sg:person.0722620357.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722620357.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hitachi Global Storage Technologies (United States)", 
              "id": "https://www.grid.ac/institutes/grid.450890.0", 
              "name": [
                "Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carey", 
            "givenName": "M. J.", 
            "id": "sg:person.0770733557.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770733557.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hitachi Global Storage Technologies (United States)", 
              "id": "https://www.grid.ac/institutes/grid.450890.0", 
              "name": [
                "Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Terris", 
            "givenName": "B. D.", 
            "id": "sg:person.011676146405.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011676146405.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hitachi Global Storage Technologies (United States)", 
              "id": "https://www.grid.ac/institutes/grid.450890.0", 
              "name": [
                "Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fullerton", 
            "givenName": "Eric E.", 
            "id": "sg:person.01330672012.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330672012.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.84.3149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002331710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.84.3149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002331710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.064430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004532459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.064430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004532459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.064430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004532459"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.014446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005368132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.014446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005368132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.014446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005368132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-8853(99)00313-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005699480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007328853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-8853(99)00289-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007915887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.140403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016590508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.140403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016590508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1651645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019801099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.100406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019986230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.70.100406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019986230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020323762", 
              "https://doi.org/10.1038/nmat1237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-8853(02)00291-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036720101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039970430", 
              "https://doi.org/10.1038/nmat1120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039970430", 
              "https://doi.org/10.1038/nmat1120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.036601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042651367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.036601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042651367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1819516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045469747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3727/38/7/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050036186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050671022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050671022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-27164-3_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050698909", 
              "https://doi.org/10.1007/3-540-27164-3_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1739271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057802540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1849572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057827532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1852081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057827974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2045552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057836650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.54.9353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060582968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.024426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060614181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.024426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060614181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.024426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060614181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.100402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060614998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.100402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060614998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.72.100402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060614998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.4281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.4281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.285.5429.867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062566192"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-03", 
        "datePublishedReg": "2006-03-01", 
        "description": "Devices that show a magnetic anisotropy normal to the film surface hold great promise towards faster and smaller magnetic bits in data-storage applications. We describe an experimental demonstration of current-induced magnetic reversal of nanopillars with perpendicular anisotropy and high coercive fields. The best results are observed for Co/Ni multilayers, which have higher giant magnetoresistance values and spin-torque efficiencies than Co/Pt multilayers. The reference layers were designed to have significantly higher anisotropy allowing a complete current\u2013field phase diagram of the free-layer reversal to be explored. The results are compared to micromagnetic modelling of the free layer that, depending on the bias current and applied field, details regions of irreversible magnetic switching, coherent and incoherent spin waves, or static non-uniform magnetization states. This ability to manipulate high-anisotropy magnetic elements could prove useful for a range of spintronic applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat1595", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Current-induced magnetization reversal in nanopillars with perpendicular anisotropy", 
        "pagination": "210-215", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c97113a4171c04ff92464afe8de28ce3bad74deb6a3f4d26a226040319c6ca1e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat1595"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042288684"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat1595", 
          "https://app.dimensions.ai/details/publication/pub.1042288684"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29191_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmat1595"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1595'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1595'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1595'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1595'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat1595 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N0b9d6d9f180847ffbdc4fa8f5739f438
    4 schema:citation sg:pub.10.1007/3-540-27164-3_6
    5 sg:pub.10.1038/nmat1120
    6 sg:pub.10.1038/nmat1237
    7 https://doi.org/10.1016/0304-8853(96)00062-5
    8 https://doi.org/10.1016/s0304-8853(02)00291-3
    9 https://doi.org/10.1016/s0304-8853(99)00289-9
    10 https://doi.org/10.1016/s0304-8853(99)00313-3
    11 https://doi.org/10.1063/1.1651645
    12 https://doi.org/10.1063/1.1739271
    13 https://doi.org/10.1063/1.1819516
    14 https://doi.org/10.1063/1.1849572
    15 https://doi.org/10.1063/1.1852081
    16 https://doi.org/10.1063/1.2045552
    17 https://doi.org/10.1088/0022-3727/38/7/r01
    18 https://doi.org/10.1103/physrevb.54.9353
    19 https://doi.org/10.1103/physrevb.70.100406
    20 https://doi.org/10.1103/physrevb.71.140403
    21 https://doi.org/10.1103/physrevb.72.014446
    22 https://doi.org/10.1103/physrevb.72.024426
    23 https://doi.org/10.1103/physrevb.72.064430
    24 https://doi.org/10.1103/physrevb.72.100402
    25 https://doi.org/10.1103/physrevlett.68.682
    26 https://doi.org/10.1103/physrevlett.80.4281
    27 https://doi.org/10.1103/physrevlett.84.3149
    28 https://doi.org/10.1103/physrevlett.91.067203
    29 https://doi.org/10.1103/physrevlett.93.036601
    30 https://doi.org/10.1126/science.285.5429.867
    31 schema:datePublished 2006-03
    32 schema:datePublishedReg 2006-03-01
    33 schema:description Devices that show a magnetic anisotropy normal to the film surface hold great promise towards faster and smaller magnetic bits in data-storage applications. We describe an experimental demonstration of current-induced magnetic reversal of nanopillars with perpendicular anisotropy and high coercive fields. The best results are observed for Co/Ni multilayers, which have higher giant magnetoresistance values and spin-torque efficiencies than Co/Pt multilayers. The reference layers were designed to have significantly higher anisotropy allowing a complete current–field phase diagram of the free-layer reversal to be explored. The results are compared to micromagnetic modelling of the free layer that, depending on the bias current and applied field, details regions of irreversible magnetic switching, coherent and incoherent spin waves, or static non-uniform magnetization states. This ability to manipulate high-anisotropy magnetic elements could prove useful for a range of spintronic applications.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N71303115e91e4009ae33162330973165
    38 Nd12aa84b02654a528a9c9a9b58848339
    39 sg:journal.1031408
    40 schema:name Current-induced magnetization reversal in nanopillars with perpendicular anisotropy
    41 schema:pagination 210-215
    42 schema:productId N03ced35cea5248d0a13d1d80bb7748f1
    43 N12823c8771f94ade94e8861d8912f578
    44 Nc16cbc7d2e484fb290266438e4c9bcc0
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042288684
    46 https://doi.org/10.1038/nmat1595
    47 schema:sdDatePublished 2019-04-11T11:52
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Nff93bfcae97c4f819ccbbff70a27588e
    50 schema:url http://www.nature.com/articles/nmat1595
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N03ced35cea5248d0a13d1d80bb7748f1 schema:name readcube_id
    55 schema:value c97113a4171c04ff92464afe8de28ce3bad74deb6a3f4d26a226040319c6ca1e
    56 rdf:type schema:PropertyValue
    57 N0b9d6d9f180847ffbdc4fa8f5739f438 rdf:first sg:person.0775343267.41
    58 rdf:rest N26530e6fcf4f4cebb3c47823b7173535
    59 N12823c8771f94ade94e8861d8912f578 schema:name dimensions_id
    60 schema:value pub.1042288684
    61 rdf:type schema:PropertyValue
    62 N1f9118f1b45546f5baa3c187cdcefde7 rdf:first sg:person.011676146405.43
    63 rdf:rest Nab623a12ca5e414bb4b91b9c6f4162b3
    64 N26530e6fcf4f4cebb3c47823b7173535 rdf:first Nea979cf139544449959e202cdb1231a5
    65 rdf:rest Nfccb97c5508a4ead9964d3ca498f54f3
    66 N71303115e91e4009ae33162330973165 schema:volumeNumber 5
    67 rdf:type schema:PublicationVolume
    68 N8cf255f6a6754877918419af8b5c8e37 rdf:first sg:person.0770733557.75
    69 rdf:rest N1f9118f1b45546f5baa3c187cdcefde7
    70 Nab623a12ca5e414bb4b91b9c6f4162b3 rdf:first sg:person.01330672012.70
    71 rdf:rest rdf:nil
    72 Nc16cbc7d2e484fb290266438e4c9bcc0 schema:name doi
    73 schema:value 10.1038/nmat1595
    74 rdf:type schema:PropertyValue
    75 Nd12aa84b02654a528a9c9a9b58848339 schema:issueNumber 3
    76 rdf:type schema:PublicationIssue
    77 Nea979cf139544449959e202cdb1231a5 schema:affiliation https://www.grid.ac/institutes/grid.462111.1
    78 schema:familyName Ravelosona
    79 schema:givenName D.
    80 rdf:type schema:Person
    81 Nfccb97c5508a4ead9964d3ca498f54f3 rdf:first sg:person.0722620357.25
    82 rdf:rest N8cf255f6a6754877918419af8b5c8e37
    83 Nff93bfcae97c4f819ccbbff70a27588e schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Engineering
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Materials Engineering
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1031408 schema:issn 1476-1122
    92 1476-4660
    93 schema:name Nature Materials
    94 rdf:type schema:Periodical
    95 sg:person.011676146405.43 schema:affiliation https://www.grid.ac/institutes/grid.450890.0
    96 schema:familyName Terris
    97 schema:givenName B. D.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011676146405.43
    99 rdf:type schema:Person
    100 sg:person.01330672012.70 schema:affiliation https://www.grid.ac/institutes/grid.450890.0
    101 schema:familyName Fullerton
    102 schema:givenName Eric E.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330672012.70
    104 rdf:type schema:Person
    105 sg:person.0722620357.25 schema:affiliation https://www.grid.ac/institutes/grid.450890.0
    106 schema:familyName Katine
    107 schema:givenName J. A.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722620357.25
    109 rdf:type schema:Person
    110 sg:person.0770733557.75 schema:affiliation https://www.grid.ac/institutes/grid.450890.0
    111 schema:familyName Carey
    112 schema:givenName M. J.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770733557.75
    114 rdf:type schema:Person
    115 sg:person.0775343267.41 schema:affiliation https://www.grid.ac/institutes/grid.450890.0
    116 schema:familyName Mangin
    117 schema:givenName S.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775343267.41
    119 rdf:type schema:Person
    120 sg:pub.10.1007/3-540-27164-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050698909
    121 https://doi.org/10.1007/3-540-27164-3_6
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nmat1120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970430
    124 https://doi.org/10.1038/nmat1120
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/nmat1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020323762
    127 https://doi.org/10.1038/nmat1237
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/s0304-8853(02)00291-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036720101
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/s0304-8853(99)00289-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007915887
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/s0304-8853(99)00313-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005699480
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.1651645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019801099
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.1739271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057802540
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.1819516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045469747
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1063/1.1849572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057827532
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.1852081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057827974
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1063/1.2045552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836650
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/0022-3727/38/7/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050036186
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevb.70.100406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019986230
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevb.71.140403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016590508
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevb.72.014446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005368132
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1103/physrevb.72.024426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060614181
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1103/physrevb.72.064430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004532459
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1103/physrevb.72.100402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060614998
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1103/physrevlett.68.682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804998
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevlett.80.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817457
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevlett.91.067203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050671022
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevlett.93.036601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042651367
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.450890.0 schema:alternateName Hitachi Global Storage Technologies (United States)
    178 schema:name Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA
    179 Laboratoire de Physique de Matériaux, UMR CNRS 7556, U.H.P.-Nancy I, B.P. 239 F-54506 Vandoeuvre cedex, France
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.462111.1 schema:alternateName Institut d'Electronique Fondamentale
    182 schema:name Hitachi Global Storage Technologies, San Jose Research Center, 650 Harry Road, San Jose, California 95120, USA
    183 Institut d’Electronique Fondamentale, UMR CNRS 8622, Université Paris Sud, 91405 Orsay Cedex, France
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...