Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-05

AUTHORS

A Courty, A Mermet, P A Albouy, E Duval, M P Pileni

ABSTRACT

Fabrication of devices from inorganic nanocrystals normally requires that they are self-organized into ordered structures. It has now been demonstrated that nanocrystals are able to self-organize in a 'supra'-crystal with a face-centred cubic (f.c.c.) structure. The physical properties of nanocrystals self-organized into compact arrays are quite different from those of both isolated nanocrystals and the bulk phase. The collective optical and magnetic properties of these nanocrystal assemblies are governed mainly by dipolar interactions. Here, we show that nanocrystals vibrate coherently when they are self-organized in f.c.c. supra-crystals. Hence, a phase relation exists between the vibrations of all of the nanocrystals in a supra-crystal. This vibrational coherence can be observed by a substantial change of the quadrupolar low-frequency Raman scattering peak. Although a change in electronic transport properties has previously been observed on self-organization of silver nanocrystals, vibrational coherence represents the first intrinsic property of f.c.c. supra-crystals. More... »

PAGES

395-398

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1366

DOI

http://dx.doi.org/10.1038/nmat1366

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052948698

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15834414


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sorbonne University", 
          "id": "https://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Laboratoire des Mat\u00e9riaux M\u00e9soscopiques et Nanom\u00e9triques, UMR CNRS 7070, Universit\u00e9 Pierre et Marie Curie, BP 52, 4 place Jussieu, 75252 Paris Cedex 05, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Courty", 
        "givenName": "A", 
        "id": "sg:person.01251556671.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251556671.48"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Mermet", 
        "givenName": "A", 
        "id": "sg:person.01026404643.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026404643.34"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Albouy", 
        "givenName": "P A", 
        "id": "sg:person.0763073237.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763073237.58"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Duval", 
        "givenName": "E", 
        "id": "sg:person.01165221604.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165221604.46"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pileni", 
        "givenName": "M P", 
        "id": "sg:person.01077321637.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077321637.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/jp0039520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008399641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0039520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008399641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s1-13.1.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010535405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-4095(200102)13:4<254::aid-adma254>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023373217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-4095(200005)12:9<633::aid-adma633>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030620932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200304417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046675399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm960513y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055418380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm960513y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055418380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100151a054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055655129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1396817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1467049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057709472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1573343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057721763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.5795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.5795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.17107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.17107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.075405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.075405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.045415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.045415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.2052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.2052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793139"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-05", 
    "datePublishedReg": "2005-05-01", 
    "description": "Fabrication of devices from inorganic nanocrystals normally requires that they are self-organized into ordered structures. It has now been demonstrated that nanocrystals are able to self-organize in a 'supra'-crystal with a face-centred cubic (f.c.c.) structure. The physical properties of nanocrystals self-organized into compact arrays are quite different from those of both isolated nanocrystals and the bulk phase. The collective optical and magnetic properties of these nanocrystal assemblies are governed mainly by dipolar interactions. Here, we show that nanocrystals vibrate coherently when they are self-organized in f.c.c. supra-crystals. Hence, a phase relation exists between the vibrations of all of the nanocrystals in a supra-crystal. This vibrational coherence can be observed by a substantial change of the quadrupolar low-frequency Raman scattering peak. Although a change in electronic transport properties has previously been observed on self-organization of silver nanocrystals, vibrational coherence represents the first intrinsic property of f.c.c. supra-crystals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1366", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals", 
    "pagination": "395-398", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fc35791b9dc80278bf62e3259b6389cbf22bf5996c24739ee4814b58e646f4ff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15834414"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1366"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052948698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1366", 
      "https://app.dimensions.ai/details/publication/pub.1052948698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29186_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmat/journal/v4/n5/full/nmat1366.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1366'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1366'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1366'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1366'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      44 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1366 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N667d7545d94a4886810ec80cc2f2efaf
4 schema:citation https://doi.org/10.1002/(sici)1521-4095(200005)12:9<633::aid-adma633>3.0.co;2-b
5 https://doi.org/10.1002/1521-4095(200102)13:4<254::aid-adma254>3.0.co;2-p
6 https://doi.org/10.1002/adma.200304417
7 https://doi.org/10.1021/cm960513y
8 https://doi.org/10.1021/j100151a054
9 https://doi.org/10.1021/jp0039520
10 https://doi.org/10.1063/1.1396817
11 https://doi.org/10.1063/1.1467049
12 https://doi.org/10.1063/1.1573343
13 https://doi.org/10.1103/physrevb.46.5795
14 https://doi.org/10.1103/physrevb.60.17107
15 https://doi.org/10.1103/physrevb.63.075405
16 https://doi.org/10.1103/physrevb.66.045415
17 https://doi.org/10.1103/physrevlett.56.2052
18 https://doi.org/10.1112/plms/s1-13.1.189
19 schema:datePublished 2005-05
20 schema:datePublishedReg 2005-05-01
21 schema:description Fabrication of devices from inorganic nanocrystals normally requires that they are self-organized into ordered structures. It has now been demonstrated that nanocrystals are able to self-organize in a 'supra'-crystal with a face-centred cubic (f.c.c.) structure. The physical properties of nanocrystals self-organized into compact arrays are quite different from those of both isolated nanocrystals and the bulk phase. The collective optical and magnetic properties of these nanocrystal assemblies are governed mainly by dipolar interactions. Here, we show that nanocrystals vibrate coherently when they are self-organized in f.c.c. supra-crystals. Hence, a phase relation exists between the vibrations of all of the nanocrystals in a supra-crystal. This vibrational coherence can be observed by a substantial change of the quadrupolar low-frequency Raman scattering peak. Although a change in electronic transport properties has previously been observed on self-organization of silver nanocrystals, vibrational coherence represents the first intrinsic property of f.c.c. supra-crystals.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N072da94980134fc696581e32d4182885
26 N66c109a2c0454c1793f7c36d6b1380ca
27 sg:journal.1031408
28 schema:name Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals
29 schema:pagination 395-398
30 schema:productId N31a41c03ff3343d799002f00de4238fa
31 N5564af25378340da8a7349e132ac4d92
32 N62c07893df034260a935d9fdee414c1d
33 N72c24690ccd54d75b49271bf09bdd8de
34 Nff52a697bd5a48038dfeed6b2b2835a7
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052948698
36 https://doi.org/10.1038/nmat1366
37 schema:sdDatePublished 2019-04-11T11:52
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N34b53a3bcb224cf1b5b5d5d69ffadd70
40 schema:url http://www.nature.com/nmat/journal/v4/n5/full/nmat1366.html
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N072da94980134fc696581e32d4182885 schema:issueNumber 5
45 rdf:type schema:PublicationIssue
46 N2aadc3ccb0b4454091a6f31b2be1841c rdf:first sg:person.01077321637.29
47 rdf:rest rdf:nil
48 N31a41c03ff3343d799002f00de4238fa schema:name pubmed_id
49 schema:value 15834414
50 rdf:type schema:PropertyValue
51 N34b53a3bcb224cf1b5b5d5d69ffadd70 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N3532fb264e82456ea734351e5868fcbb rdf:first sg:person.0763073237.58
54 rdf:rest Ndd9c3449dc7f4196a8859e108d4a788c
55 N5564af25378340da8a7349e132ac4d92 schema:name doi
56 schema:value 10.1038/nmat1366
57 rdf:type schema:PropertyValue
58 N62c07893df034260a935d9fdee414c1d schema:name dimensions_id
59 schema:value pub.1052948698
60 rdf:type schema:PropertyValue
61 N667d7545d94a4886810ec80cc2f2efaf rdf:first sg:person.01251556671.48
62 rdf:rest N6fcb229770554651884955159a9fc019
63 N66c109a2c0454c1793f7c36d6b1380ca schema:volumeNumber 4
64 rdf:type schema:PublicationVolume
65 N6fcb229770554651884955159a9fc019 rdf:first sg:person.01026404643.34
66 rdf:rest N3532fb264e82456ea734351e5868fcbb
67 N72c24690ccd54d75b49271bf09bdd8de schema:name readcube_id
68 schema:value fc35791b9dc80278bf62e3259b6389cbf22bf5996c24739ee4814b58e646f4ff
69 rdf:type schema:PropertyValue
70 Ndd9c3449dc7f4196a8859e108d4a788c rdf:first sg:person.01165221604.46
71 rdf:rest N2aadc3ccb0b4454091a6f31b2be1841c
72 Nff52a697bd5a48038dfeed6b2b2835a7 schema:name nlm_unique_id
73 schema:value 101155473
74 rdf:type schema:PropertyValue
75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
79 schema:name Other Physical Sciences
80 rdf:type schema:DefinedTerm
81 sg:journal.1031408 schema:issn 1476-1122
82 1476-4660
83 schema:name Nature Materials
84 rdf:type schema:Periodical
85 sg:person.01026404643.34 schema:familyName Mermet
86 schema:givenName A
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026404643.34
88 rdf:type schema:Person
89 sg:person.01077321637.29 schema:familyName Pileni
90 schema:givenName M P
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077321637.29
92 rdf:type schema:Person
93 sg:person.01165221604.46 schema:familyName Duval
94 schema:givenName E
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165221604.46
96 rdf:type schema:Person
97 sg:person.01251556671.48 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
98 schema:familyName Courty
99 schema:givenName A
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251556671.48
101 rdf:type schema:Person
102 sg:person.0763073237.58 schema:familyName Albouy
103 schema:givenName P A
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763073237.58
105 rdf:type schema:Person
106 https://doi.org/10.1002/(sici)1521-4095(200005)12:9<633::aid-adma633>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1030620932
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/1521-4095(200102)13:4<254::aid-adma254>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1023373217
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/adma.200304417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046675399
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1021/cm960513y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055418380
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1021/j100151a054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055655129
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1021/jp0039520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008399641
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.1396817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702567
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.1467049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057709472
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.1573343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057721763
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.46.5795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060564006
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.60.17107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593816
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.63.075405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598786
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.66.045415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603896
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.56.2052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793139
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1112/plms/s1-13.1.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010535405
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
137 schema:name Laboratoire des Matériaux Mésoscopiques et Nanométriques, UMR CNRS 7070, Université Pierre et Marie Curie, BP 52, 4 place Jussieu, 75252 Paris Cedex 05, France.
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...