Low-cost and nanoscale non-volatile memory concept for future silicon chips View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-04

AUTHORS

Martijn H. R. Lankhorst, Bas W. S. M. M. Ketelaars, R. A. M. Wolters

ABSTRACT

Non-volatile 'flash' memories are key components of integrated circuits because they retain their data when power is interrupted. Despite their great commercial success, the semiconductor industry is searching for alternative non-volatile memories with improved performance and better opportunities for scaling down the size of memory cells. Here we demonstrate the feasibility of a new semiconductor memory concept. The individual memory cell is based on a narrow line of phase-change material. By sending low-power current pulses through the line, the phase-change material can be programmed reversibly between two distinguishable resistive states on a timescale of nanoseconds. Reducing the dimensions of the phase-change line to the nanometre scale improves the performance in terms of speed and power consumption. These advantages are achieved by the use of a doped-SbTe phase-change material. The simplicity of the concept promises that integration into a logic complementary metal oxide semiconductor (CMOS) process flow might be possible with only a few additional lithographic steps. More... »

PAGES

347-352

Journal

TITLE

Nature Materials

ISSUE

4

VOLUME

4

Author Affiliations

Related Patents

  • Phase Change Current Density Control Structure
  • Forced Ion Migration For Chalcogenide Phase Change Memory Device
  • Semiconductor Device
  • Phase Change Memory Cell With Heater And Method Therefor
  • Phase Change Memory Cell With Heater And Method Therefor
  • Nonvolatile Memory Device
  • Forming Phase-Change Memory Using Self-Aligned Contact/Via Scheme
  • Self-Aligned, Planar Phase Change Memory Elements And Devices, Systems Employing The Same And Methods Of Forming The Same
  • Semiconductor Device
  • Bipolar Switching Of Phase Change Device
  • Nonvolatile Programmable Switch Device Using Phase-Change Memory Device And Method Of Manuracturing The Same
  • Resistive Memory Cell Fabrication Methods And Devices
  • Resistive Memory Architectures With Multiple Memory Cells Per Access Device
  • Phase Change Current Density Control Structure
  • Phase Change Current Density Control Structure
  • Self-Aligned, Planar Phase Change Memory Elements And Devices, Systems Employing The Same And Method Of Forming The Same
  • Semiconductor Device
  • Resistive Memory Architectures With Multiple Memory Cells Per Access Device
  • Molecule Detection Device Formed In A Semiconductor Structure
  • Resistive Memory Architectures With Multiple Memory Cells Per Access Device
  • Power Management Control And Controlling Memory Refresh Operations
  • Power Management Control And Controlling Memory Refresh Operations
  • Resistive Memory Architectures With Multiple Memory Cells Per Access Device
  • Resistive Memory Architectures With Multiple Memory Cells Per Access Device
  • Phase Change Current Density Control Structure
  • Semiconductor Device With Recording Layer Containing Indium, Germanium, Antimony And Tellurium
  • Phase Change Memory Cell And Method Of Formation
  • Self-Aligned, Planar Phase Change Memory Elements And Devices
  • Forced Ion Migration For Chalcogenide Phase Change Memory Device
  • Porous Siox Materials For Improvement In Siox Switching Device Performances
  • Phase Change Current Density Control Structure
  • Nonvolatile Programmable Switch Device Using Phase-Change Memory Device And Method Of Manufacturing The Same
  • Forced Ion Migration For Chalcogenide Phase Change Memory Device
  • Non-Volatile Memory Device
  • Semiconductor Device
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat1350

    DOI

    http://dx.doi.org/10.1038/nmat1350

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012684034

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/15765107


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Philips (Netherlands)", 
              "id": "https://www.grid.ac/institutes/grid.417284.c", 
              "name": [
                "Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lankhorst", 
            "givenName": "Martijn H. R.", 
            "id": "sg:person.016016475655.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016016475655.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Philips (Netherlands)", 
              "id": "https://www.grid.ac/institutes/grid.417284.c", 
              "name": [
                "Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ketelaars", 
            "givenName": "Bas W. S. M. M.", 
            "id": "sg:person.0761427241.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761427241.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Philips (Netherlands)", 
              "id": "https://www.grid.ac/institutes/grid.417284.c", 
              "name": [
                "Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wolters", 
            "givenName": "R. A. M.", 
            "id": "sg:person.010552444271.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552444271.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.532695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009507397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ir:20031108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056863793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1557373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057719646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1667606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057745070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.50.209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.50.209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2003.811702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2003.811804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1406149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062166720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.40.1592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063065514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.42.809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063071000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.42.863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063071012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/s0883769400036368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067962778"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2005-04", 
        "datePublishedReg": "2005-04-01", 
        "description": "Non-volatile 'flash' memories are key components of integrated circuits because they retain their data when power is interrupted. Despite their great commercial success, the semiconductor industry is searching for alternative non-volatile memories with improved performance and better opportunities for scaling down the size of memory cells. Here we demonstrate the feasibility of a new semiconductor memory concept. The individual memory cell is based on a narrow line of phase-change material. By sending low-power current pulses through the line, the phase-change material can be programmed reversibly between two distinguishable resistive states on a timescale of nanoseconds. Reducing the dimensions of the phase-change line to the nanometre scale improves the performance in terms of speed and power consumption. These advantages are achieved by the use of a doped-SbTe phase-change material. The simplicity of the concept promises that integration into a logic complementary metal oxide semiconductor (CMOS) process flow might be possible with only a few additional lithographic steps.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat1350", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Low-cost and nanoscale non-volatile memory concept for future silicon chips", 
        "pagination": "347-352", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3c6d23dae465345f894c923d25f7316e55f6d764de660df363eacb7ce172b7c8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "15765107"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat1350"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012684034"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat1350", 
          "https://app.dimensions.ai/details/publication/pub.1012684034"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29212_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmat1350"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1350'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1350'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1350'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1350'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      21 PREDICATES      41 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat1350 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N521e5dc9d47347ccadad2ab25e530492
    4 schema:citation https://doi.org/10.1049/ir:20031108
    5 https://doi.org/10.1063/1.1557373
    6 https://doi.org/10.1063/1.1667606
    7 https://doi.org/10.1103/revmodphys.50.209
    8 https://doi.org/10.1109/jproc.2003.811702
    9 https://doi.org/10.1109/jproc.2003.811804
    10 https://doi.org/10.1116/1.1406149
    11 https://doi.org/10.1117/12.532695
    12 https://doi.org/10.1143/jjap.40.1592
    13 https://doi.org/10.1143/jjap.42.809
    14 https://doi.org/10.1143/jjap.42.863
    15 https://doi.org/10.1557/s0883769400036368
    16 schema:datePublished 2005-04
    17 schema:datePublishedReg 2005-04-01
    18 schema:description Non-volatile 'flash' memories are key components of integrated circuits because they retain their data when power is interrupted. Despite their great commercial success, the semiconductor industry is searching for alternative non-volatile memories with improved performance and better opportunities for scaling down the size of memory cells. Here we demonstrate the feasibility of a new semiconductor memory concept. The individual memory cell is based on a narrow line of phase-change material. By sending low-power current pulses through the line, the phase-change material can be programmed reversibly between two distinguishable resistive states on a timescale of nanoseconds. Reducing the dimensions of the phase-change line to the nanometre scale improves the performance in terms of speed and power consumption. These advantages are achieved by the use of a doped-SbTe phase-change material. The simplicity of the concept promises that integration into a logic complementary metal oxide semiconductor (CMOS) process flow might be possible with only a few additional lithographic steps.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N3db9a152a15d4a2598c54c39ba15a12b
    23 N416f58c3393545a298f10584f28713ef
    24 sg:journal.1031408
    25 schema:name Low-cost and nanoscale non-volatile memory concept for future silicon chips
    26 schema:pagination 347-352
    27 schema:productId N324998d45e2244d29914203c3e4b7beb
    28 N8744711a912c4f608b3d9b15f3431fa0
    29 N8cfee3c9fb9f46739a8bbad06f1430e0
    30 N9a10629351e94e96a93152760ec6c9d0
    31 Ncd007ee561ba43278fef05f13f7c6e90
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012684034
    33 https://doi.org/10.1038/nmat1350
    34 schema:sdDatePublished 2019-04-11T11:55
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nbed940d473bd4486a3e864fc01b08391
    37 schema:url http://www.nature.com/articles/nmat1350
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N324998d45e2244d29914203c3e4b7beb schema:name dimensions_id
    42 schema:value pub.1012684034
    43 rdf:type schema:PropertyValue
    44 N3db9a152a15d4a2598c54c39ba15a12b schema:issueNumber 4
    45 rdf:type schema:PublicationIssue
    46 N416f58c3393545a298f10584f28713ef schema:volumeNumber 4
    47 rdf:type schema:PublicationVolume
    48 N521e5dc9d47347ccadad2ab25e530492 rdf:first sg:person.016016475655.06
    49 rdf:rest N7b219f67b26449cf8345d6365f067822
    50 N622617f394d545c0802325f21d37a1ce rdf:first sg:person.010552444271.95
    51 rdf:rest rdf:nil
    52 N7b219f67b26449cf8345d6365f067822 rdf:first sg:person.0761427241.74
    53 rdf:rest N622617f394d545c0802325f21d37a1ce
    54 N8744711a912c4f608b3d9b15f3431fa0 schema:name nlm_unique_id
    55 schema:value 101155473
    56 rdf:type schema:PropertyValue
    57 N8cfee3c9fb9f46739a8bbad06f1430e0 schema:name pubmed_id
    58 schema:value 15765107
    59 rdf:type schema:PropertyValue
    60 N9a10629351e94e96a93152760ec6c9d0 schema:name readcube_id
    61 schema:value 3c6d23dae465345f894c923d25f7316e55f6d764de660df363eacb7ce172b7c8
    62 rdf:type schema:PropertyValue
    63 Nbed940d473bd4486a3e864fc01b08391 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Ncd007ee561ba43278fef05f13f7c6e90 schema:name doi
    66 schema:value 10.1038/nmat1350
    67 rdf:type schema:PropertyValue
    68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Engineering
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Materials Engineering
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1031408 schema:issn 1476-1122
    75 1476-4660
    76 schema:name Nature Materials
    77 rdf:type schema:Periodical
    78 sg:person.010552444271.95 schema:affiliation https://www.grid.ac/institutes/grid.417284.c
    79 schema:familyName Wolters
    80 schema:givenName R. A. M.
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552444271.95
    82 rdf:type schema:Person
    83 sg:person.016016475655.06 schema:affiliation https://www.grid.ac/institutes/grid.417284.c
    84 schema:familyName Lankhorst
    85 schema:givenName Martijn H. R.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016016475655.06
    87 rdf:type schema:Person
    88 sg:person.0761427241.74 schema:affiliation https://www.grid.ac/institutes/grid.417284.c
    89 schema:familyName Ketelaars
    90 schema:givenName Bas W. S. M. M.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761427241.74
    92 rdf:type schema:Person
    93 https://doi.org/10.1049/ir:20031108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056863793
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1063/1.1557373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057719646
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1063/1.1667606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057745070
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/revmodphys.50.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838891
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/jproc.2003.811702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296087
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/jproc.2003.811804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296108
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1116/1.1406149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062166720
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1117/12.532695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507397
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1143/jjap.40.1592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063065514
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1143/jjap.42.809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063071000
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1143/jjap.42.863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063071012
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1557/s0883769400036368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067962778
    116 rdf:type schema:CreativeWork
    117 https://www.grid.ac/institutes/grid.417284.c schema:alternateName Philips (Netherlands)
    118 schema:name Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...