Donor impurity band exchange in dilute ferromagnetic oxides View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-02

AUTHORS

J M D Coey, M Venkatesan, C B Fitzgerald

ABSTRACT

Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism. More... »

PAGES

173-179

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1310

DOI

http://dx.doi.org/10.1038/nmat1310

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030108003

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15654343


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Trinity College Dublin", 
          "id": "https://www.grid.ac/institutes/grid.8217.c", 
          "name": [
            "Physics Department, Trinity College, Dublin 2, Ireland. jcoey@tcd.ie "
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coey", 
        "givenName": "J M D", 
        "id": "sg:person.010736134621.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736134621.14"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Venkatesan", 
        "givenName": "M", 
        "id": "sg:person.01340065744.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340065744.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Fitzgerald", 
        "givenName": "C B", 
        "id": "sg:person.07450740537.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450740537.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0268-1242/17/4/310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006312434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.247202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007333214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.247202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007333214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.107203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(70)90480-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009025222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(70)90480-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009025222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(01)00400-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009303942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(01)02183-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010550412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-83238-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015345672", 
          "https://doi.org/10.1007/978-3-642-83238-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-83238-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015345672", 
          "https://doi.org/10.1007/978-3-642-83238-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.155201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020928157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.155201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020928157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/37/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024066119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.235205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024160203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.235205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024160203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026428462", 
          "https://doi.org/10.1038/nmat984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026428462", 
          "https://doi.org/10.1038/nmat984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1570521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029637307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1564864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030732386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1650041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036816869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.115211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037208847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.115211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037208847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(02)00073-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040280088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018737200101278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045504055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047189299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.077205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047189299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430630a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051977254", 
          "https://doi.org/10.1038/430630a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/430630a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051977254", 
          "https://doi.org/10.1038/430630a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1384478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057701426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1501765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057713379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1517164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057715337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1556115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057719326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1556121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057719332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1556122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057719333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1597414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057724185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1703848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1764936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057817819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1773617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057820166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.130.1711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.130.1711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.1548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.1548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060532946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.15019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.15019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060595402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.075211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060602181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.075211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060602181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.017401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.017401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.157202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.157202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1056186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062444294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5455.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198507802.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098720375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/3527602798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106524030"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-02", 
    "datePublishedReg": "2005-02-01", 
    "description": "Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1310", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Donor impurity band exchange in dilute ferromagnetic oxides", 
    "pagination": "173-179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f6e7b709cd4cf8c33557a10ca60d3f551d89546017848eb566fe5d9bb2b59b8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15654343"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1310"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030108003"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1310", 
      "https://app.dimensions.ai/details/publication/pub.1030108003"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmat/journal/v4/n2/full/nmat1310.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1310'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1310'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1310'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1310'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1310 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N770cc67f47e54daea12bb0e52ceb3f70
4 schema:citation sg:pub.10.1007/978-3-642-83238-3
5 sg:pub.10.1038/430630a
6 sg:pub.10.1038/nmat984
7 https://doi.org/10.1002/3527602798
8 https://doi.org/10.1016/0038-1098(70)90480-1
9 https://doi.org/10.1016/s0022-0248(01)02183-2
10 https://doi.org/10.1016/s0038-1098(01)00400-8
11 https://doi.org/10.1016/s0038-1098(02)00073-x
12 https://doi.org/10.1063/1.1384478
13 https://doi.org/10.1063/1.1501765
14 https://doi.org/10.1063/1.1517164
15 https://doi.org/10.1063/1.1556115
16 https://doi.org/10.1063/1.1556121
17 https://doi.org/10.1063/1.1556122
18 https://doi.org/10.1063/1.1564864
19 https://doi.org/10.1063/1.1570521
20 https://doi.org/10.1063/1.1597414
21 https://doi.org/10.1063/1.1650041
22 https://doi.org/10.1063/1.1703848
23 https://doi.org/10.1063/1.1764936
24 https://doi.org/10.1063/1.1773617
25 https://doi.org/10.1080/00018737200101278
26 https://doi.org/10.1088/0268-1242/17/4/310
27 https://doi.org/10.1088/0953-8984/15/37/r01
28 https://doi.org/10.1093/acprof:oso/9780198507802.001.0001
29 https://doi.org/10.1103/physrev.130.1711
30 https://doi.org/10.1103/physrevb.28.1548
31 https://doi.org/10.1103/physrevb.61.15019
32 https://doi.org/10.1103/physrevb.65.075211
33 https://doi.org/10.1103/physrevb.65.235205
34 https://doi.org/10.1103/physrevb.67.115211
35 https://doi.org/10.1103/physrevb.67.155201
36 https://doi.org/10.1103/physrevlett.87.107203
37 https://doi.org/10.1103/physrevlett.88.247202
38 https://doi.org/10.1103/physrevlett.90.017401
39 https://doi.org/10.1103/physrevlett.91.077205
40 https://doi.org/10.1103/physrevlett.91.157202
41 https://doi.org/10.1126/science.1056186
42 https://doi.org/10.1126/science.287.5455.1019
43 schema:datePublished 2005-02
44 schema:datePublishedReg 2005-02-01
45 schema:description Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N0db25cfd869d423d8e1a795ab1aedd15
50 Nb7be842dfeb043a5a8b0d708127b1409
51 sg:journal.1031408
52 schema:name Donor impurity band exchange in dilute ferromagnetic oxides
53 schema:pagination 173-179
54 schema:productId N2a789d0bae2c43448c5571559b9acc2d
55 N4c90b6f032b444e8a5198ed371af0e91
56 N5f10448967ea46a5a3ee6a3bdb3312f4
57 Nb48e803a7b404f4fbbdaaecbdbdbc6b3
58 Nff75c43398be47c19e24a123811f7e7d
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030108003
60 https://doi.org/10.1038/nmat1310
61 schema:sdDatePublished 2019-04-11T11:53
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nc5a4d46cb6e54ce59a1e4a01c144fbf4
64 schema:url http://www.nature.com/nmat/journal/v4/n2/full/nmat1310.html
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0db25cfd869d423d8e1a795ab1aedd15 schema:volumeNumber 4
69 rdf:type schema:PublicationVolume
70 N2a789d0bae2c43448c5571559b9acc2d schema:name pubmed_id
71 schema:value 15654343
72 rdf:type schema:PropertyValue
73 N3997bf6717774604a64d67a58a07405a rdf:first sg:person.01340065744.03
74 rdf:rest N9684984d629b4d11be865a245b0fd188
75 N4c90b6f032b444e8a5198ed371af0e91 schema:name nlm_unique_id
76 schema:value 101155473
77 rdf:type schema:PropertyValue
78 N5f10448967ea46a5a3ee6a3bdb3312f4 schema:name doi
79 schema:value 10.1038/nmat1310
80 rdf:type schema:PropertyValue
81 N770cc67f47e54daea12bb0e52ceb3f70 rdf:first sg:person.010736134621.14
82 rdf:rest N3997bf6717774604a64d67a58a07405a
83 N9684984d629b4d11be865a245b0fd188 rdf:first sg:person.07450740537.86
84 rdf:rest rdf:nil
85 Nb48e803a7b404f4fbbdaaecbdbdbc6b3 schema:name dimensions_id
86 schema:value pub.1030108003
87 rdf:type schema:PropertyValue
88 Nb7be842dfeb043a5a8b0d708127b1409 schema:issueNumber 2
89 rdf:type schema:PublicationIssue
90 Nc5a4d46cb6e54ce59a1e4a01c144fbf4 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nff75c43398be47c19e24a123811f7e7d schema:name readcube_id
93 schema:value 8f6e7b709cd4cf8c33557a10ca60d3f551d89546017848eb566fe5d9bb2b59b8
94 rdf:type schema:PropertyValue
95 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
96 schema:name Chemical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
99 schema:name Inorganic Chemistry
100 rdf:type schema:DefinedTerm
101 sg:journal.1031408 schema:issn 1476-1122
102 1476-4660
103 schema:name Nature Materials
104 rdf:type schema:Periodical
105 sg:person.010736134621.14 schema:affiliation https://www.grid.ac/institutes/grid.8217.c
106 schema:familyName Coey
107 schema:givenName J M D
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010736134621.14
109 rdf:type schema:Person
110 sg:person.01340065744.03 schema:familyName Venkatesan
111 schema:givenName M
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340065744.03
113 rdf:type schema:Person
114 sg:person.07450740537.86 schema:familyName Fitzgerald
115 schema:givenName C B
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450740537.86
117 rdf:type schema:Person
118 sg:pub.10.1007/978-3-642-83238-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015345672
119 https://doi.org/10.1007/978-3-642-83238-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/430630a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051977254
122 https://doi.org/10.1038/430630a
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026428462
125 https://doi.org/10.1038/nmat984
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/3527602798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106524030
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0038-1098(70)90480-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009025222
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0022-0248(01)02183-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010550412
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0038-1098(01)00400-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009303942
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0038-1098(02)00073-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040280088
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.1384478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057701426
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.1501765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713379
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1517164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057715337
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.1556115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057719326
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.1556121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057719332
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1556122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057719333
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.1564864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030732386
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.1570521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029637307
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.1597414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057724185
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.1650041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036816869
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.1703848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773791
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.1764936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057817819
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.1773617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057820166
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/00018737200101278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045504055
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/0268-1242/17/4/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006312434
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0953-8984/15/37/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024066119
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/acprof:oso/9780198507802.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098720375
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrev.130.1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060426865
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.28.1548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060532946
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.61.15019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060595402
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.65.075211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060602181
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.65.235205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024160203
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.67.115211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037208847
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.67.155201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020928157
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.87.107203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007967535
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.88.247202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007333214
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.90.017401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826128
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.91.077205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047189299
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.91.157202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827359
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.1056186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444294
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.287.5455.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568262
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.8217.c schema:alternateName Trinity College Dublin
200 schema:name Physics Department, Trinity College, Dublin 2, Ireland. jcoey@tcd.ie <jcoey@tcd.ie>
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...