Measuring strain distributions in amorphous materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-12-19

AUTHORS

Henning F. Poulsen, John A. Wert, Jörg Neuefeind, Veijo Honkimäki, Mark Daymond

ABSTRACT

A number of properties of amorphous materials including fatigue, fracture and component performance are governed by the magnitude of strain fields around inhomogeneities such as inclusions, voids and cracks. At present, localized strain information is only available from surface probes such as optical or electron microscopy1,2. This is unfortunate because surface and bulk characteristics in general differ. Hence, to a large extent, the assessment of strain distributions relies on untested models. Here we present a universal diffraction method for characterizing bulk stress and strain fields in amorphous materials and demonstrate its efficacy by work on a material of current interest in materials engineering: a bulk metallic glass3,4,5. The macroscopic response is shown to be less stiff than the atomic next-neighbour bonds because of structural rearrangements at the scale of 4–10 Å. The method is also applicable to composites comprising an amorphous matrix and crystalline inclusions. More... »

PAGES

33-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1266

DOI

http://dx.doi.org/10.1038/nmat1266

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052294059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials Research Department, Ris\u00f8 National Laboratory, DK-4000, Roskilde, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Materials Research Department, Ris\u00f8 National Laboratory, DK-4000, Roskilde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poulsen", 
        "givenName": "Henning F.", 
        "id": "sg:person.0776767300.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776767300.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Research Department, Ris\u00f8 National Laboratory, DK-4000, Roskilde, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5170.3", 
          "name": [
            "Materials Research Department, Ris\u00f8 National Laboratory, DK-4000, Roskilde, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wert", 
        "givenName": "John A.", 
        "id": "sg:person.016013336063.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016013336063.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SNS, Oak Ridge National Laboratory, PB 2008, MS 6474, 37922, Oak Ridge, Tennessee, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "SNS, Oak Ridge National Laboratory, PB 2008, MS 6474, 37922, Oak Ridge, Tennessee, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neuefeind", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.015006147547.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006147547.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.5398.7", 
          "name": [
            "European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Honkim\u00e4ki", 
        "givenName": "Veijo", 
        "id": "sg:person.01254744655.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254744655.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ISIS Rutherford Appleton Laboratory, OX11 0QX, Oxfordshire, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ISIS Rutherford Appleton Laboratory, OX11 0QX, Oxfordshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daymond", 
        "givenName": "Mark", 
        "id": "sg:person.015076275551.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076275551.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1006651217517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007052812", 
          "https://doi.org/10.1023/a:1006651217517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/s0883769400053252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067964161", 
          "https://doi.org/10.1557/s0883769400053252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-806-mm3.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067957980", 
          "https://doi.org/10.1557/proc-806-mm3.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/384049a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025028752", 
          "https://doi.org/10.1038/384049a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-806-mm8.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067958007", 
          "https://doi.org/10.1557/proc-806-mm8.12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-590-241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067946831", 
          "https://doi.org/10.1557/proc-590-241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415887a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045480039", 
          "https://doi.org/10.1038/415887a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-003-0145-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043789325", 
          "https://doi.org/10.1007/s11661-003-0145-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12-19", 
    "datePublishedReg": "2004-12-19", 
    "description": "A number of properties of amorphous materials including fatigue, fracture and component performance are governed by the magnitude of strain fields around inhomogeneities such as inclusions, voids and cracks. At present, localized strain information is only available from surface probes such as optical or electron microscopy1,2. This is unfortunate because surface and bulk characteristics in general differ. Hence, to a large extent, the assessment of strain distributions relies on untested models. Here we present a universal diffraction method for characterizing bulk stress and strain fields in amorphous materials and demonstrate its efficacy by work on a material of current interest in materials engineering: a bulk metallic glass3,4,5. The macroscopic response is shown to be less stiff than the atomic next-neighbour bonds because of structural rearrangements at the scale of 4\u201310 \u00c5. The method is also applicable to composites comprising an amorphous matrix and crystalline inclusions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nmat1266", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "amorphous material", 
      "Materials Engineering", 
      "component performance", 
      "bulk stress", 
      "strain distribution", 
      "macroscopic response", 
      "strain field", 
      "amorphous matrix", 
      "strain information", 
      "bulk characteristics", 
      "materials", 
      "surface probe", 
      "cracks", 
      "composites", 
      "diffraction methods", 
      "voids", 
      "engineering", 
      "field", 
      "surface", 
      "inhomogeneity", 
      "fatigue", 
      "properties", 
      "distribution", 
      "performance", 
      "method", 
      "current interest", 
      "fractures", 
      "matrix", 
      "stress", 
      "large extent", 
      "characteristics", 
      "number of properties", 
      "work", 
      "magnitude", 
      "model", 
      "inclusion", 
      "electrons", 
      "general differ", 
      "scale", 
      "probe", 
      "crystalline inclusions", 
      "structural rearrangements", 
      "interest", 
      "bonds", 
      "number", 
      "assessment", 
      "information", 
      "response", 
      "extent", 
      "untested model", 
      "differs", 
      "rearrangement", 
      "efficacy", 
      "universal diffraction method", 
      "atomic next-neighbour bonds", 
      "next-neighbour bonds"
    ], 
    "name": "Measuring strain distributions in amorphous materials", 
    "pagination": "33-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052294059"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1266"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1266", 
      "https://app.dimensions.ai/details/publication/pub.1052294059"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_390.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nmat1266"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1266'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1266'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1266'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1266'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      22 PREDICATES      89 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1266 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N668b7f143f534a589638ca39420420f7
4 schema:citation sg:pub.10.1007/s11661-003-0145-6
5 sg:pub.10.1023/a:1006651217517
6 sg:pub.10.1038/384049a0
7 sg:pub.10.1038/415887a
8 sg:pub.10.1557/proc-590-241
9 sg:pub.10.1557/proc-806-mm3.5
10 sg:pub.10.1557/proc-806-mm8.12
11 sg:pub.10.1557/s0883769400053252
12 schema:datePublished 2004-12-19
13 schema:datePublishedReg 2004-12-19
14 schema:description A number of properties of amorphous materials including fatigue, fracture and component performance are governed by the magnitude of strain fields around inhomogeneities such as inclusions, voids and cracks. At present, localized strain information is only available from surface probes such as optical or electron microscopy1,2. This is unfortunate because surface and bulk characteristics in general differ. Hence, to a large extent, the assessment of strain distributions relies on untested models. Here we present a universal diffraction method for characterizing bulk stress and strain fields in amorphous materials and demonstrate its efficacy by work on a material of current interest in materials engineering: a bulk metallic glass3,4,5. The macroscopic response is shown to be less stiff than the atomic next-neighbour bonds because of structural rearrangements at the scale of 4–10 Å. The method is also applicable to composites comprising an amorphous matrix and crystalline inclusions.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nb33df621207e4d62806d0726f78054cb
19 Ne2f71d0cc1144a9984b7a846aa3fba5d
20 sg:journal.1031408
21 schema:keywords Materials Engineering
22 amorphous material
23 amorphous matrix
24 assessment
25 atomic next-neighbour bonds
26 bonds
27 bulk characteristics
28 bulk stress
29 characteristics
30 component performance
31 composites
32 cracks
33 crystalline inclusions
34 current interest
35 differs
36 diffraction methods
37 distribution
38 efficacy
39 electrons
40 engineering
41 extent
42 fatigue
43 field
44 fractures
45 general differ
46 inclusion
47 information
48 inhomogeneity
49 interest
50 large extent
51 macroscopic response
52 magnitude
53 materials
54 matrix
55 method
56 model
57 next-neighbour bonds
58 number
59 number of properties
60 performance
61 probe
62 properties
63 rearrangement
64 response
65 scale
66 strain distribution
67 strain field
68 strain information
69 stress
70 structural rearrangements
71 surface
72 surface probe
73 universal diffraction method
74 untested model
75 voids
76 work
77 schema:name Measuring strain distributions in amorphous materials
78 schema:pagination 33-36
79 schema:productId N9cf4b59836e8413f9369d2de9efb81a0
80 Nb5460c1063cc4624a48eb3102c8cbcbf
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052294059
82 https://doi.org/10.1038/nmat1266
83 schema:sdDatePublished 2021-12-01T19:16
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N22d59ca4717545fc9688b6d523a1b83a
86 schema:url https://doi.org/10.1038/nmat1266
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N19bc5102fa1b42ce8cc3741e8e5a8400 rdf:first sg:person.015076275551.18
91 rdf:rest rdf:nil
92 N22d59ca4717545fc9688b6d523a1b83a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N3d1a51e67c5640fc82aa06a6e1ac1d22 rdf:first sg:person.015006147547.28
95 rdf:rest Nbfc0b1dae660448b8b9ea3df4f3bb686
96 N668b7f143f534a589638ca39420420f7 rdf:first sg:person.0776767300.32
97 rdf:rest N795ce010c40e4fa593f72bbef4278982
98 N795ce010c40e4fa593f72bbef4278982 rdf:first sg:person.016013336063.43
99 rdf:rest N3d1a51e67c5640fc82aa06a6e1ac1d22
100 N9cf4b59836e8413f9369d2de9efb81a0 schema:name dimensions_id
101 schema:value pub.1052294059
102 rdf:type schema:PropertyValue
103 Nb33df621207e4d62806d0726f78054cb schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 Nb5460c1063cc4624a48eb3102c8cbcbf schema:name doi
106 schema:value 10.1038/nmat1266
107 rdf:type schema:PropertyValue
108 Nbfc0b1dae660448b8b9ea3df4f3bb686 rdf:first sg:person.01254744655.03
109 rdf:rest N19bc5102fa1b42ce8cc3741e8e5a8400
110 Ne2f71d0cc1144a9984b7a846aa3fba5d schema:volumeNumber 4
111 rdf:type schema:PublicationVolume
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
116 schema:name Materials Engineering
117 rdf:type schema:DefinedTerm
118 sg:journal.1031408 schema:issn 1476-1122
119 1476-4660
120 schema:name Nature Materials
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.01254744655.03 schema:affiliation grid-institutes:grid.5398.7
124 schema:familyName Honkimäki
125 schema:givenName Veijo
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254744655.03
127 rdf:type schema:Person
128 sg:person.015006147547.28 schema:affiliation grid-institutes:grid.135519.a
129 schema:familyName Neuefeind
130 schema:givenName Jörg
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006147547.28
132 rdf:type schema:Person
133 sg:person.015076275551.18 schema:affiliation grid-institutes:None
134 schema:familyName Daymond
135 schema:givenName Mark
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076275551.18
137 rdf:type schema:Person
138 sg:person.016013336063.43 schema:affiliation grid-institutes:grid.5170.3
139 schema:familyName Wert
140 schema:givenName John A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016013336063.43
142 rdf:type schema:Person
143 sg:person.0776767300.32 schema:affiliation grid-institutes:grid.5170.3
144 schema:familyName Poulsen
145 schema:givenName Henning F.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776767300.32
147 rdf:type schema:Person
148 sg:pub.10.1007/s11661-003-0145-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043789325
149 https://doi.org/10.1007/s11661-003-0145-6
150 rdf:type schema:CreativeWork
151 sg:pub.10.1023/a:1006651217517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052812
152 https://doi.org/10.1023/a:1006651217517
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/384049a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025028752
155 https://doi.org/10.1038/384049a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/415887a schema:sameAs https://app.dimensions.ai/details/publication/pub.1045480039
158 https://doi.org/10.1038/415887a
159 rdf:type schema:CreativeWork
160 sg:pub.10.1557/proc-590-241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067946831
161 https://doi.org/10.1557/proc-590-241
162 rdf:type schema:CreativeWork
163 sg:pub.10.1557/proc-806-mm3.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067957980
164 https://doi.org/10.1557/proc-806-mm3.5
165 rdf:type schema:CreativeWork
166 sg:pub.10.1557/proc-806-mm8.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067958007
167 https://doi.org/10.1557/proc-806-mm8.12
168 rdf:type schema:CreativeWork
169 sg:pub.10.1557/s0883769400053252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067964161
170 https://doi.org/10.1557/s0883769400053252
171 rdf:type schema:CreativeWork
172 grid-institutes:None schema:alternateName ISIS Rutherford Appleton Laboratory, OX11 0QX, Oxfordshire, UK
173 schema:name ISIS Rutherford Appleton Laboratory, OX11 0QX, Oxfordshire, UK
174 rdf:type schema:Organization
175 grid-institutes:grid.135519.a schema:alternateName SNS, Oak Ridge National Laboratory, PB 2008, MS 6474, 37922, Oak Ridge, Tennessee, USA
176 schema:name SNS, Oak Ridge National Laboratory, PB 2008, MS 6474, 37922, Oak Ridge, Tennessee, USA
177 rdf:type schema:Organization
178 grid-institutes:grid.5170.3 schema:alternateName Materials Research Department, Risø National Laboratory, DK-4000, Roskilde, Denmark
179 schema:name Materials Research Department, Risø National Laboratory, DK-4000, Roskilde, Denmark
180 rdf:type schema:Organization
181 grid-institutes:grid.5398.7 schema:alternateName European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble, France
182 schema:name European Synchrotron Radiation Facility, BP 220, F-38043, Grenoble, France
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...