Excitations of incoherent spin-waves due to spin-transfer torque View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12

AUTHORS

Kyung-Jin Lee, Alina Deac, Olivier Redon, Jean-Pierre Nozières, Bernard Dieny

ABSTRACT

The possibility of exciting microwave oscillations in a nanomagnet by a spin-polarized current, as predicted by Slonczewski and Berger, has recently been demonstrated. This observation opens important prospects of applications in radiofrequency components. However, some unresolved inconsistencies are found when interpreting the magnetization dynamics within the coherent spin-torque model. In some cases, the telegraph noise caused by spin-currents could not be quantitatively described by that model. This has led to controversy about the need for an effective magnetic temperature model. Here we interpret the experimental results of Kiselev et al. using micromagnetic simulations. We point out the key role played by incoherent spin-wave excitation due to spin-transfer torque. The incoherence is caused by spatial inhomogeneities in local fields generating distributions of local precession frequencies. We observe telegraph noise with gigahertz frequencies at zero temperature. This is a consequence of the chaotic dynamics and is associated with transitions between attraction wells in phase space. More... »

PAGES

877-881

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1237

DOI

http://dx.doi.org/10.1038/nmat1237

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020323762

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15531888


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electric Conductivity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Failure Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microwaves", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oscillometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Torque", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samsung (South Korea)", 
          "id": "https://www.grid.ac/institutes/grid.419666.a", 
          "name": [
            "SPINTEC \u2014 Unit\u00e9 de Recherche Associ\u00e9e CEA/DSM & CNRS/SPM-STIC, CEA Grenoble, 38054 Grenoble, France", 
            "CEA/DRT/LETI\u2013CEA/GRE, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9, France", 
            "Permanent address: Storage Laboratory, Samsung Advanced Institute of Technology, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kyung-Jin", 
        "id": "sg:person.0677353670.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677353670.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "SPINTEC \u2014 Unit\u00e9 de Recherche Associ\u00e9e CEA/DSM & CNRS/SPM-STIC, CEA Grenoble, 38054 Grenoble, France", 
            "CEA/DRT/LETI\u2013CEA/GRE, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deac", 
        "givenName": "Alina", 
        "id": "sg:person.014406013520.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406013520.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "SPINTEC \u2014 Unit\u00e9 de Recherche Associ\u00e9e CEA/DSM & CNRS/SPM-STIC, CEA Grenoble, 38054 Grenoble, France", 
            "CEA/DRT/LETI\u2013CEA/GRE, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Redon", 
        "givenName": "Olivier", 
        "id": "sg:person.01341232322.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341232322.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "SPINTEC \u2014 Unit\u00e9 de Recherche Associ\u00e9e CEA/DSM & CNRS/SPM-STIC, CEA Grenoble, 38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nozi\u00e8res", 
        "givenName": "Jean-Pierre", 
        "id": "sg:person.015211152571.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015211152571.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.457348.9", 
          "name": [
            "SPINTEC \u2014 Unit\u00e9 de Recherche Associ\u00e9e CEA/DSM & CNRS/SPM-STIC, CEA Grenoble, 38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dieny", 
        "givenName": "Bernard", 
        "id": "sg:person.01246371577.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246371577.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.69.214409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001510339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.214409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001510339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.024404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003318859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.024404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003318859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.134430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005061905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.134430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005061905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006825169", 
          "https://doi.org/10.1038/nature01967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006825169", 
          "https://doi.org/10.1038/nature01967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.134416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007835366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.134416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007835366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.257209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024771621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.257209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024771621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024816905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024816905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.146803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026874009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.146803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026874009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1355329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057698170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1455602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057708344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.1979.1060329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061669476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2003.821202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061676296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103203772", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "The possibility of exciting microwave oscillations in a nanomagnet by a spin-polarized current, as predicted by Slonczewski and Berger, has recently been demonstrated. This observation opens important prospects of applications in radiofrequency components. However, some unresolved inconsistencies are found when interpreting the magnetization dynamics within the coherent spin-torque model. In some cases, the telegraph noise caused by spin-currents could not be quantitatively described by that model. This has led to controversy about the need for an effective magnetic temperature model. Here we interpret the experimental results of Kiselev et al. using micromagnetic simulations. We point out the key role played by incoherent spin-wave excitation due to spin-transfer torque. The incoherence is caused by spatial inhomogeneities in local fields generating distributions of local precession frequencies. We observe telegraph noise with gigahertz frequencies at zero temperature. This is a consequence of the chaotic dynamics and is associated with transitions between attraction wells in phase space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1237", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Excitations of incoherent spin-waves due to spin-transfer torque", 
    "pagination": "877-881", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "60d63faae62971577abf591d9cf409a3616e4d51a8db7c5fb014a03f820c0193"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15531888"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1237"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020323762"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1237", 
      "https://app.dimensions.ai/details/publication/pub.1020323762"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000585.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmat1237"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1237'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1237'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1237'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1237'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      57 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1237 schema:about N0ef3bb27c2434eec95c9a6e3f0f22b64
2 N1faacafa1fbb4c688d49daeb1a16a8bf
3 N4d673fb1de744000bb7a8aacc0e23753
4 N4f37a029bfaf4bd6b452fc35a5f60c04
5 N52c20619e3df4990a31321ed33089dbe
6 N9fa3a42e223444829d106803958c3bd9
7 Na556f93f8eed4b69a65eb539514bc1da
8 Nc2473d00eed64341acc3867263054a2f
9 Ncd9acd674e0a4321948a322924b847e2
10 Nd022a24100d7449097b22bd970a8f61c
11 anzsrc-for:02
12 anzsrc-for:0299
13 schema:author Nc0e44b5883214c0c8e5ccfc22d24dc2e
14 schema:citation sg:pub.10.1038/nature01967
15 https://app.dimensions.ai/details/publication/pub.1103203772
16 https://doi.org/10.1016/0304-8853(96)00062-5
17 https://doi.org/10.1063/1.1355329
18 https://doi.org/10.1063/1.1455602
19 https://doi.org/10.1063/1.881916
20 https://doi.org/10.1103/physrevb.54.9353
21 https://doi.org/10.1103/physrevb.62.570
22 https://doi.org/10.1103/physrevb.68.024404
23 https://doi.org/10.1103/physrevb.69.134416
24 https://doi.org/10.1103/physrevb.69.134430
25 https://doi.org/10.1103/physrevb.69.214409
26 https://doi.org/10.1103/physrevlett.90.207201
27 https://doi.org/10.1103/physrevlett.91.146803
28 https://doi.org/10.1103/physrevlett.91.257209
29 https://doi.org/10.1103/physrevlett.92.027201
30 https://doi.org/10.1109/tmag.1979.1060329
31 https://doi.org/10.1109/tmag.2003.821202
32 schema:datePublished 2004-12
33 schema:datePublishedReg 2004-12-01
34 schema:description The possibility of exciting microwave oscillations in a nanomagnet by a spin-polarized current, as predicted by Slonczewski and Berger, has recently been demonstrated. This observation opens important prospects of applications in radiofrequency components. However, some unresolved inconsistencies are found when interpreting the magnetization dynamics within the coherent spin-torque model. In some cases, the telegraph noise caused by spin-currents could not be quantitatively described by that model. This has led to controversy about the need for an effective magnetic temperature model. Here we interpret the experimental results of Kiselev et al. using micromagnetic simulations. We point out the key role played by incoherent spin-wave excitation due to spin-transfer torque. The incoherence is caused by spatial inhomogeneities in local fields generating distributions of local precession frequencies. We observe telegraph noise with gigahertz frequencies at zero temperature. This is a consequence of the chaotic dynamics and is associated with transitions between attraction wells in phase space.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N4b4396ed2d1444ac86bfbd59570b7b39
39 N5d2565e1f49448d185d700b49c600e29
40 sg:journal.1031408
41 schema:name Excitations of incoherent spin-waves due to spin-transfer torque
42 schema:pagination 877-881
43 schema:productId N6b88bfea579d474db480e8d49ed30640
44 N71a8a83195c34113a7d2b6f74cfb7828
45 N8e4535d88dcf4ecf8cff0b4bd3083563
46 Nc8e9e1075b644dc79a81d46f41ffad4f
47 Neef9ed0c328a4af4bebbd749f522c775
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020323762
49 https://doi.org/10.1038/nmat1237
50 schema:sdDatePublished 2019-04-10T23:37
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc54efe1dedd34858b313bca2e7b153c8
53 schema:url http://www.nature.com/articles/nmat1237
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0199c4017a8d446fa80d9ae3f8d76afd rdf:first sg:person.01341232322.46
58 rdf:rest N9c78cd6cdc9149fa88347babd282a788
59 N0ef3bb27c2434eec95c9a6e3f0f22b64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Electric Conductivity
61 rdf:type schema:DefinedTerm
62 N1faacafa1fbb4c688d49daeb1a16a8bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Torque
64 rdf:type schema:DefinedTerm
65 N4b4396ed2d1444ac86bfbd59570b7b39 schema:volumeNumber 3
66 rdf:type schema:PublicationVolume
67 N4d673fb1de744000bb7a8aacc0e23753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Nonlinear Dynamics
69 rdf:type schema:DefinedTerm
70 N4f37a029bfaf4bd6b452fc35a5f60c04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Microwaves
72 rdf:type schema:DefinedTerm
73 N52c20619e3df4990a31321ed33089dbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Nanotechnology
75 rdf:type schema:DefinedTerm
76 N5d2565e1f49448d185d700b49c600e29 schema:issueNumber 12
77 rdf:type schema:PublicationIssue
78 N6b88bfea579d474db480e8d49ed30640 schema:name dimensions_id
79 schema:value pub.1020323762
80 rdf:type schema:PropertyValue
81 N71a8a83195c34113a7d2b6f74cfb7828 schema:name nlm_unique_id
82 schema:value 101155473
83 rdf:type schema:PropertyValue
84 N890f5fa9cb884c26ac77729e402a7535 rdf:first sg:person.01246371577.22
85 rdf:rest rdf:nil
86 N8e4535d88dcf4ecf8cff0b4bd3083563 schema:name doi
87 schema:value 10.1038/nmat1237
88 rdf:type schema:PropertyValue
89 N9c78cd6cdc9149fa88347babd282a788 rdf:first sg:person.015211152571.46
90 rdf:rest N890f5fa9cb884c26ac77729e402a7535
91 N9fa3a42e223444829d106803958c3bd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Equipment Failure Analysis
93 rdf:type schema:DefinedTerm
94 Na556f93f8eed4b69a65eb539514bc1da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Oscillometry
96 rdf:type schema:DefinedTerm
97 Nba5b5cc8e27f41868c617cb1e63669a8 rdf:first sg:person.014406013520.20
98 rdf:rest N0199c4017a8d446fa80d9ae3f8d76afd
99 Nc0e44b5883214c0c8e5ccfc22d24dc2e rdf:first sg:person.0677353670.17
100 rdf:rest Nba5b5cc8e27f41868c617cb1e63669a8
101 Nc2473d00eed64341acc3867263054a2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Models, Theoretical
103 rdf:type schema:DefinedTerm
104 Nc54efe1dedd34858b313bca2e7b153c8 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nc8e9e1075b644dc79a81d46f41ffad4f schema:name pubmed_id
107 schema:value 15531888
108 rdf:type schema:PropertyValue
109 Ncd9acd674e0a4321948a322924b847e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Computer Simulation
111 rdf:type schema:DefinedTerm
112 Nd022a24100d7449097b22bd970a8f61c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Magnetics
114 rdf:type schema:DefinedTerm
115 Neef9ed0c328a4af4bebbd749f522c775 schema:name readcube_id
116 schema:value 60d63faae62971577abf591d9cf409a3616e4d51a8db7c5fb014a03f820c0193
117 rdf:type schema:PropertyValue
118 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
122 schema:name Other Physical Sciences
123 rdf:type schema:DefinedTerm
124 sg:journal.1031408 schema:issn 1476-1122
125 1476-4660
126 schema:name Nature Materials
127 rdf:type schema:Periodical
128 sg:person.01246371577.22 schema:affiliation https://www.grid.ac/institutes/grid.457348.9
129 schema:familyName Dieny
130 schema:givenName Bernard
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246371577.22
132 rdf:type schema:Person
133 sg:person.01341232322.46 schema:affiliation https://www.grid.ac/institutes/grid.457348.9
134 schema:familyName Redon
135 schema:givenName Olivier
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341232322.46
137 rdf:type schema:Person
138 sg:person.014406013520.20 schema:affiliation https://www.grid.ac/institutes/grid.457348.9
139 schema:familyName Deac
140 schema:givenName Alina
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406013520.20
142 rdf:type schema:Person
143 sg:person.015211152571.46 schema:affiliation https://www.grid.ac/institutes/grid.457348.9
144 schema:familyName Nozières
145 schema:givenName Jean-Pierre
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015211152571.46
147 rdf:type schema:Person
148 sg:person.0677353670.17 schema:affiliation https://www.grid.ac/institutes/grid.419666.a
149 schema:familyName Lee
150 schema:givenName Kyung-Jin
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677353670.17
152 rdf:type schema:Person
153 sg:pub.10.1038/nature01967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006825169
154 https://doi.org/10.1038/nature01967
155 rdf:type schema:CreativeWork
156 https://app.dimensions.ai/details/publication/pub.1103203772 schema:CreativeWork
157 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.1355329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057698170
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.1455602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057708344
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.881916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127404
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.62.570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597797
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.68.024404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003318859
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.69.134416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007835366
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.69.134430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005061905
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.69.214409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001510339
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.90.207201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826750
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.91.146803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026874009
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.91.257209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024771621
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.92.027201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024816905
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tmag.1979.1060329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061669476
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tmag.2003.821202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061676296
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.419666.a schema:alternateName Samsung (South Korea)
190 schema:name CEA/DRT/LETI–CEA/GRE, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9, France
191 Permanent address: Storage Laboratory, Samsung Advanced Institute of Technology, Suwon, Korea
192 SPINTEC — Unité de Recherche Associée CEA/DSM & CNRS/SPM-STIC, CEA Grenoble, 38054 Grenoble, France
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.457348.9 schema:alternateName CEA Grenoble
195 schema:name CEA/DRT/LETI–CEA/GRE, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9, France
196 SPINTEC — Unité de Recherche Associée CEA/DSM & CNRS/SPM-STIC, CEA Grenoble, 38054 Grenoble, France
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...