A structural model for metallic glasses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-09-19

AUTHORS

Daniel B. Miracle

ABSTRACT

Despite the intense interest in metallic glasses for a variety of engineering applications, many details of their structure remain a mystery. Here, we present the first compelling atomic structural model for metallic glasses. This structural model is based on a new sphere-packing scheme—the dense packing of atomic clusters. Random positioning of solvent atoms and medium-range atomic order of solute atoms are combined to reproduce diffraction data successfully over radial distances up to ∼1 nm. Although metallic glasses can have any number of chemically distinct solute species, this model shows that they contain no more than three topologically distinct solutes and that these solutes have specific and predictable sizes relative to the solvent atoms. Finally, this model includes defects that provide richness to the structural description of metallic glasses. The model accurately predicts the number of solute atoms in the first coordination shell of a typical solvent atom, and provides a remarkable ability to predict metallic-glass compositions accurately for a wide range of simple and complex alloys. More... »

PAGES

697-702

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1219

DOI

http://dx.doi.org/10.1038/nmat1219

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021477303

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15378050


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.417730.6", 
          "name": [
            "Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miracle", 
        "givenName": "Daniel B.", 
        "id": "sg:person.012351461225.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351461225.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3540127879_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004049865", 
          "https://doi.org/10.1007/3540127879_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/188908a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009492902", 
          "https://doi.org/10.1038/188908a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2004.0176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040590901", 
          "https://doi.org/10.1557/jmr.2004.0176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035986212", 
          "https://doi.org/10.1007/bf01192589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/188910a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028707571", 
          "https://doi.org/10.1038/188910a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/187869b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841532", 
          "https://doi.org/10.1038/187869b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/276484a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022925399", 
          "https://doi.org/10.1038/276484a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/26609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053014674", 
          "https://doi.org/10.1038/26609"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-09-19", 
    "datePublishedReg": "2004-09-19", 
    "description": "Despite the intense interest in metallic glasses for a variety of engineering applications, many details of their structure remain a mystery. Here, we present the first compelling atomic structural model for metallic glasses. This structural model is based on a new sphere-packing scheme\u2014the dense packing of atomic clusters. Random positioning of solvent atoms and medium-range atomic order of solute atoms are combined to reproduce diffraction data successfully over radial distances up to \u223c1 nm. Although metallic glasses can have any number of chemically distinct solute species, this model shows that they contain no more than three topologically distinct solutes and that these solutes have specific and predictable sizes relative to the solvent atoms. Finally, this model includes defects that provide richness to the structural description of metallic glasses. The model accurately predicts the number of solute atoms in the first coordination shell of a typical solvent atom, and provides a remarkable ability to predict metallic-glass compositions accurately for a wide range of simple and complex alloys.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nmat1219", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "metallic glasses", 
      "solute atoms", 
      "complex alloys", 
      "engineering applications", 
      "metallic glass compositions", 
      "glass", 
      "dense packing", 
      "solvent atoms", 
      "atomic order", 
      "structural model", 
      "radial distance", 
      "alloy", 
      "solute species", 
      "predictable size", 
      "wide range", 
      "random positioning", 
      "atomic structural model", 
      "solutes", 
      "model", 
      "shell", 
      "applications", 
      "positioning", 
      "scheme", 
      "structure", 
      "range", 
      "size", 
      "order", 
      "intense interest", 
      "detail", 
      "packing", 
      "atomic clusters", 
      "defects", 
      "composition", 
      "diffraction data", 
      "atoms", 
      "distance", 
      "number", 
      "structural description", 
      "description", 
      "remarkable ability", 
      "interest", 
      "ability", 
      "data", 
      "coordination shell", 
      "variety", 
      "first coordination shell", 
      "clusters", 
      "species", 
      "mystery", 
      "richness"
    ], 
    "name": "A structural model for metallic glasses", 
    "pagination": "697-702", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021477303"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1219"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15378050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1219", 
      "https://app.dimensions.ai/details/publication/pub.1021477303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_390.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nmat1219"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1219'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1219'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1219'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1219'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      88 URIs      72 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1219 schema:about N0ab30dac869d4a64a1d934c7f297ca28
2 N0eab433589e64c8db3af1c563543403c
3 Nbcbfeb21683c4e80ba79f5e40b7cb8a2
4 Nd004f930364d40adbc2753a300d5c81f
5 anzsrc-for:09
6 anzsrc-for:0912
7 schema:author N6e8373a92a37460dbf5e611dbffad544
8 schema:citation sg:pub.10.1007/3540127879_24
9 sg:pub.10.1007/bf01192589
10 sg:pub.10.1038/187869b0
11 sg:pub.10.1038/188908a0
12 sg:pub.10.1038/188910a0
13 sg:pub.10.1038/26609
14 sg:pub.10.1038/276484a0
15 sg:pub.10.1557/jmr.2004.0176
16 schema:datePublished 2004-09-19
17 schema:datePublishedReg 2004-09-19
18 schema:description Despite the intense interest in metallic glasses for a variety of engineering applications, many details of their structure remain a mystery. Here, we present the first compelling atomic structural model for metallic glasses. This structural model is based on a new sphere-packing scheme—the dense packing of atomic clusters. Random positioning of solvent atoms and medium-range atomic order of solute atoms are combined to reproduce diffraction data successfully over radial distances up to ∼1 nm. Although metallic glasses can have any number of chemically distinct solute species, this model shows that they contain no more than three topologically distinct solutes and that these solutes have specific and predictable sizes relative to the solvent atoms. Finally, this model includes defects that provide richness to the structural description of metallic glasses. The model accurately predicts the number of solute atoms in the first coordination shell of a typical solvent atom, and provides a remarkable ability to predict metallic-glass compositions accurately for a wide range of simple and complex alloys.
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N4e038ab2f2f44400b669c5552f3767d7
23 N6427b4709e434f4e9f56274da663ee87
24 sg:journal.1031408
25 schema:keywords ability
26 alloy
27 applications
28 atomic clusters
29 atomic order
30 atomic structural model
31 atoms
32 clusters
33 complex alloys
34 composition
35 coordination shell
36 data
37 defects
38 dense packing
39 description
40 detail
41 diffraction data
42 distance
43 engineering applications
44 first coordination shell
45 glass
46 intense interest
47 interest
48 metallic glass compositions
49 metallic glasses
50 model
51 mystery
52 number
53 order
54 packing
55 positioning
56 predictable size
57 radial distance
58 random positioning
59 range
60 remarkable ability
61 richness
62 scheme
63 shell
64 size
65 solute atoms
66 solute species
67 solutes
68 solvent atoms
69 species
70 structural description
71 structural model
72 structure
73 variety
74 wide range
75 schema:name A structural model for metallic glasses
76 schema:pagination 697-702
77 schema:productId Nab2952e1a7a741e4bb70b1e90b7f4a19
78 Nd77f03d8b6484fc8aebf615ab68c5c20
79 Nebe8683fcf724fcd8329f9ba5ba4413a
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021477303
81 https://doi.org/10.1038/nmat1219
82 schema:sdDatePublished 2022-06-01T22:05
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N46242ff98e0f4c43a199eebedacb1bd0
85 schema:url https://doi.org/10.1038/nmat1219
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0ab30dac869d4a64a1d934c7f297ca28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Glass
91 rdf:type schema:DefinedTerm
92 N0eab433589e64c8db3af1c563543403c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Crystallography
94 rdf:type schema:DefinedTerm
95 N46242ff98e0f4c43a199eebedacb1bd0 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N4e038ab2f2f44400b669c5552f3767d7 schema:volumeNumber 3
98 rdf:type schema:PublicationVolume
99 N6427b4709e434f4e9f56274da663ee87 schema:issueNumber 10
100 rdf:type schema:PublicationIssue
101 N6e8373a92a37460dbf5e611dbffad544 rdf:first sg:person.012351461225.80
102 rdf:rest rdf:nil
103 Nab2952e1a7a741e4bb70b1e90b7f4a19 schema:name dimensions_id
104 schema:value pub.1021477303
105 rdf:type schema:PropertyValue
106 Nbcbfeb21683c4e80ba79f5e40b7cb8a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Models, Molecular
108 rdf:type schema:DefinedTerm
109 Nd004f930364d40adbc2753a300d5c81f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Metals
111 rdf:type schema:DefinedTerm
112 Nd77f03d8b6484fc8aebf615ab68c5c20 schema:name pubmed_id
113 schema:value 15378050
114 rdf:type schema:PropertyValue
115 Nebe8683fcf724fcd8329f9ba5ba4413a schema:name doi
116 schema:value 10.1038/nmat1219
117 rdf:type schema:PropertyValue
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
122 schema:name Materials Engineering
123 rdf:type schema:DefinedTerm
124 sg:journal.1031408 schema:issn 1476-1122
125 1476-4660
126 schema:name Nature Materials
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.012351461225.80 schema:affiliation grid-institutes:grid.417730.6
130 schema:familyName Miracle
131 schema:givenName Daniel B.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351461225.80
133 rdf:type schema:Person
134 sg:pub.10.1007/3540127879_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004049865
135 https://doi.org/10.1007/3540127879_24
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf01192589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035986212
138 https://doi.org/10.1007/bf01192589
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/187869b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841532
141 https://doi.org/10.1038/187869b0
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/188908a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009492902
144 https://doi.org/10.1038/188908a0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/188910a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707571
147 https://doi.org/10.1038/188910a0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/26609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053014674
150 https://doi.org/10.1038/26609
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/276484a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022925399
153 https://doi.org/10.1038/276484a0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1557/jmr.2004.0176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040590901
156 https://doi.org/10.1557/jmr.2004.0176
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.417730.6 schema:alternateName Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, Ohio, USA
159 schema:name Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, Ohio, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...