Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-06

AUTHORS

Kenji Watanabe, Takashi Taniguchi, Hisao Kanda

ABSTRACT

The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode. More... »

PAGES

404-409

References to SciGraph publications

Journal

TITLE

Nature Materials

ISSUE

6

VOLUME

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1134

DOI

http://dx.doi.org/10.1038/nmat1134

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025956058

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15156198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010575643400.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanda", 
        "givenName": "Hisao", 
        "id": "sg:person.010704347747.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704347747.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-04548-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006004391", 
          "https://doi.org/10.1007/978-3-662-04548-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04548-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006004391", 
          "https://doi.org/10.1007/978-3-662-04548-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-9635(93)90038-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008858889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-9635(93)90038-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008858889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(96)00340-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012006205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/15/7/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022997625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3697(01)00030-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032866763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-9635(02)00386-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033857472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-9635(02)00386-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033857472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(92)90199-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034792612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(92)90199-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034792612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/20/9/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039588591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2220910123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043718424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(00)00907-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045560557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.112086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057659641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.120688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057684866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1493666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057712387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/5/21/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058966404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.2633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.2633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.3537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.24.3537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.29.2131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.6051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.6051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.6105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060544164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.6105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060544164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.7787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.7787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.3633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.3633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.15606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.15606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.9496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.9496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060586819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.7433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.7433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.104102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.104102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.4054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060813228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.35.l74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063057027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.36.l463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063058974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.21.1936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063095622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.47.1844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063104556"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1134", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal", 
    "pagination": "404-409", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7ba78105e074afbc5b89e6c13112e483cb9cee1ffb3aff42f6c5a6293db7a095"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15156198"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1134"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025956058"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1134", 
      "https://app.dimensions.ai/details/publication/pub.1025956058"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54015_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmat1134"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1134'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1134'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1134'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1134'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1134 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nce050981c76442668342ba7b67e97bee
4 schema:citation sg:pub.10.1007/978-3-662-04548-0
5 https://doi.org/10.1002/pssb.2220910123
6 https://doi.org/10.1016/0022-3697(92)90199-n
7 https://doi.org/10.1016/0038-1098(96)00340-7
8 https://doi.org/10.1016/0925-9635(93)90038-4
9 https://doi.org/10.1016/s0022-0248(00)00907-6
10 https://doi.org/10.1016/s0022-3697(01)00030-0
11 https://doi.org/10.1016/s0925-9635(02)00386-2
12 https://doi.org/10.1063/1.111126
13 https://doi.org/10.1063/1.112086
14 https://doi.org/10.1063/1.120688
15 https://doi.org/10.1063/1.1493666
16 https://doi.org/10.1088/0022-3719/20/9/014
17 https://doi.org/10.1088/0022-3719/5/21/014
18 https://doi.org/10.1088/0022-3727/15/7/009
19 https://doi.org/10.1103/physrev.140.a352
20 https://doi.org/10.1103/physrevb.13.2633
21 https://doi.org/10.1103/physrevb.13.5560
22 https://doi.org/10.1103/physrevb.24.3537
23 https://doi.org/10.1103/physrevb.29.2131
24 https://doi.org/10.1103/physrevb.30.6051
25 https://doi.org/10.1103/physrevb.36.6105
26 https://doi.org/10.1103/physrevb.40.7852
27 https://doi.org/10.1103/physrevb.44.7787
28 https://doi.org/10.1103/physrevb.47.3633
29 https://doi.org/10.1103/physrevb.50.15606
30 https://doi.org/10.1103/physrevb.56.9496
31 https://doi.org/10.1103/physrevb.59.7433
32 https://doi.org/10.1103/physrevb.68.104102
33 https://doi.org/10.1103/physrevlett.69.1707
34 https://doi.org/10.1103/physrevlett.76.4054
35 https://doi.org/10.1143/jjap.35.l74
36 https://doi.org/10.1143/jjap.36.l463
37 https://doi.org/10.1143/jpsj.21.1936
38 https://doi.org/10.1143/jpsj.47.1844
39 schema:datePublished 2004-06
40 schema:datePublishedReg 2004-06-01
41 schema:description The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N20dc564a85544afaaca910326418cf37
46 N3b0c53532c94457a9f212d087ff33e16
47 sg:journal.1031408
48 schema:name Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal
49 schema:pagination 404-409
50 schema:productId N3dfade21be2547d192f98cff5f432285
51 N69a4e00f7ad14ee79be324f290f39a5f
52 Nd845ff325181459b93c80207ecbd28a8
53 Ndfbdea5cab2e46088457b4814a0be505
54 Nf3bc4c5097d24170a6bb017167ff0627
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025956058
56 https://doi.org/10.1038/nmat1134
57 schema:sdDatePublished 2019-04-11T12:15
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N7d199094697e40249dc775781203047d
60 schema:url http://www.nature.com/articles/nmat1134
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N20dc564a85544afaaca910326418cf37 schema:issueNumber 6
65 rdf:type schema:PublicationIssue
66 N3b0c53532c94457a9f212d087ff33e16 schema:volumeNumber 3
67 rdf:type schema:PublicationVolume
68 N3dfade21be2547d192f98cff5f432285 schema:name pubmed_id
69 schema:value 15156198
70 rdf:type schema:PropertyValue
71 N3f1fb36c7366428d9556db0fac231165 rdf:first sg:person.010704347747.75
72 rdf:rest rdf:nil
73 N69a4e00f7ad14ee79be324f290f39a5f schema:name dimensions_id
74 schema:value pub.1025956058
75 rdf:type schema:PropertyValue
76 N7d199094697e40249dc775781203047d schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nce050981c76442668342ba7b67e97bee rdf:first sg:person.010575643400.34
79 rdf:rest Nce297197873c4e50aa7cffa18c6c1871
80 Nce297197873c4e50aa7cffa18c6c1871 rdf:first sg:person.0765715521.02
81 rdf:rest N3f1fb36c7366428d9556db0fac231165
82 Nd845ff325181459b93c80207ecbd28a8 schema:name nlm_unique_id
83 schema:value 101155473
84 rdf:type schema:PropertyValue
85 Ndfbdea5cab2e46088457b4814a0be505 schema:name doi
86 schema:value 10.1038/nmat1134
87 rdf:type schema:PropertyValue
88 Nf3bc4c5097d24170a6bb017167ff0627 schema:name readcube_id
89 schema:value 7ba78105e074afbc5b89e6c13112e483cb9cee1ffb3aff42f6c5a6293db7a095
90 rdf:type schema:PropertyValue
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
95 schema:name Optical Physics
96 rdf:type schema:DefinedTerm
97 sg:journal.1031408 schema:issn 1476-1122
98 1476-4660
99 schema:name Nature Materials
100 rdf:type schema:Periodical
101 sg:person.010575643400.34 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
102 schema:familyName Watanabe
103 schema:givenName Kenji
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
105 rdf:type schema:Person
106 sg:person.010704347747.75 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
107 schema:familyName Kanda
108 schema:givenName Hisao
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704347747.75
110 rdf:type schema:Person
111 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
112 schema:familyName Taniguchi
113 schema:givenName Takashi
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
115 rdf:type schema:Person
116 sg:pub.10.1007/978-3-662-04548-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006004391
117 https://doi.org/10.1007/978-3-662-04548-0
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/pssb.2220910123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043718424
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0022-3697(92)90199-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1034792612
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0038-1098(96)00340-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012006205
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0925-9635(93)90038-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008858889
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0022-0248(00)00907-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045560557
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0022-3697(01)00030-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032866763
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0925-9635(02)00386-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033857472
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.111126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658685
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.112086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057659641
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.120688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057684866
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.1493666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057712387
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0022-3719/20/9/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039588591
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0022-3719/5/21/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058966404
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/0022-3727/15/7/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022997625
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrev.140.a352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431585
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.13.2633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060520835
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.13.5560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521234
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.24.3537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529466
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.29.2131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534071
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.30.6051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060536382
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.36.6105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060544164
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.40.7852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060552507
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.44.7787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560036
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.47.3633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565993
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.50.15606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573100
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.56.9496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060586819
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.59.7433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591993
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.68.104102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607431
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.69.1707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805303
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.76.4054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060813228
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1143/jjap.35.l74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063057027
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1143/jjap.36.l463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063058974
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1143/jpsj.21.1936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063095622
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1143/jpsj.47.1844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063104556
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
188 schema:name Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...