Tailoring ferromagnetic chalcopyrites View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-06

AUTHORS

Steven C. Erwin, Igor Žutić

ABSTRACT

If magnetic semiconductors are ever to find wide application in real spintronic devices, their magnetic and electronic properties will require tailoring in much the same way that bandgaps are engineered in conventional semiconductors. Unfortunately, no systematic understanding yet exists of how, or even whether, properties such as Curie temperatures and bandgaps are related in magnetic semiconductors. Here we explore theoretically these and other relationships within 64 members of a single materials class, the Mn-doped II-IV-V(2) chalcopyrites (where II, IV and V represent elements from groups II, IV and V, respectively); three of these compounds are already known experimentally to be ferromagnetic semiconductors. Our first-principles results reveal a variation of magnetic properties across different materials that cannot be explained by either of the two dominant models of ferromagnetism in semiconductors. On the basis of our results for structural, electronic and magnetic properties, we identify a small number of new stable chalcopyrites with excellent prospects for ferromagnetism. More... »

PAGES

410-414

References to SciGraph publications

Journal

TITLE

Nature Materials

ISSUE

6

VOLUME

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1127

DOI

http://dx.doi.org/10.1038/nmat1127

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037179701

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15146174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Center for Computational Materials Science, Naval Research Laboratory, Washington DC 20375, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erwin", 
        "givenName": "Steven C.", 
        "id": "sg:person.01222557500.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222557500.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Center for Computational Materials Science, Naval Research Laboratory, Washington DC 20375, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u017duti\u0107", 
        "givenName": "Igor", 
        "id": "sg:person.01011155323.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011155323.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-0248(01)02396-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006429019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007081623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007081623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.76.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.195205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.195205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018059441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026343778", 
          "https://doi.org/10.1038/nmat989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026343778", 
          "https://doi.org/10.1038/nmat989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/16/4/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031583653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.245206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034213358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.245206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034213358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(02)00094-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040241321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.047205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040407404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.047205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040407404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/14/34/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042273031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.227202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044541148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.227202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044541148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5379.951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048702032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1517164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057715337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.10070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.10070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.6671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.6671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.245205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.245205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.205206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.205206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060605051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.075208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.075208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.257203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.257203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5455.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.39.l949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063065091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098928823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "If magnetic semiconductors are ever to find wide application in real spintronic devices, their magnetic and electronic properties will require tailoring in much the same way that bandgaps are engineered in conventional semiconductors. Unfortunately, no systematic understanding yet exists of how, or even whether, properties such as Curie temperatures and bandgaps are related in magnetic semiconductors. Here we explore theoretically these and other relationships within 64 members of a single materials class, the Mn-doped II-IV-V(2) chalcopyrites (where II, IV and V represent elements from groups II, IV and V, respectively); three of these compounds are already known experimentally to be ferromagnetic semiconductors. Our first-principles results reveal a variation of magnetic properties across different materials that cannot be explained by either of the two dominant models of ferromagnetism in semiconductors. On the basis of our results for structural, electronic and magnetic properties, we identify a small number of new stable chalcopyrites with excellent prospects for ferromagnetism.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1127", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Tailoring ferromagnetic chalcopyrites", 
    "pagination": "410-414", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b11c49c450e0eb7fc5ef622c71a20dc0c8a04891101bde2e2203a4cf283eb57e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15146174"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1127"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037179701"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1127", 
      "https://app.dimensions.ai/details/publication/pub.1037179701"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54008_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/nmat1127"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1127'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1127'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1127'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1127'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1127 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd6c4666213864d848bf490d176b9f92e
4 schema:citation sg:pub.10.1038/nmat989
5 https://doi.org/10.1016/s0022-0248(01)02396-x
6 https://doi.org/10.1016/s0038-1098(02)00094-7
7 https://doi.org/10.1063/1.1517164
8 https://doi.org/10.1088/0268-1242/16/4/201
9 https://doi.org/10.1088/0953-8984/14/34/201
10 https://doi.org/10.1103/physrevb.46.10070
11 https://doi.org/10.1103/physrevb.46.6671
12 https://doi.org/10.1103/physrevb.47.558
13 https://doi.org/10.1103/physrevb.54.11169
14 https://doi.org/10.1103/physrevb.63.195205
15 https://doi.org/10.1103/physrevb.63.245205
16 https://doi.org/10.1103/physrevb.66.205206
17 https://doi.org/10.1103/physrevb.68.245206
18 https://doi.org/10.1103/physrevb.69.075208
19 https://doi.org/10.1103/physrevlett.84.5628
20 https://doi.org/10.1103/physrevlett.87.227202
21 https://doi.org/10.1103/physrevlett.88.047205
22 https://doi.org/10.1103/physrevlett.88.257203
23 https://doi.org/10.1103/revmodphys.76.323
24 https://doi.org/10.1126/science.281.5379.951
25 https://doi.org/10.1126/science.287.5455.1019
26 https://doi.org/10.1142/p246
27 https://doi.org/10.1143/jjap.39.l949
28 schema:datePublished 2004-06
29 schema:datePublishedReg 2004-06-01
30 schema:description If magnetic semiconductors are ever to find wide application in real spintronic devices, their magnetic and electronic properties will require tailoring in much the same way that bandgaps are engineered in conventional semiconductors. Unfortunately, no systematic understanding yet exists of how, or even whether, properties such as Curie temperatures and bandgaps are related in magnetic semiconductors. Here we explore theoretically these and other relationships within 64 members of a single materials class, the Mn-doped II-IV-V(2) chalcopyrites (where II, IV and V represent elements from groups II, IV and V, respectively); three of these compounds are already known experimentally to be ferromagnetic semiconductors. Our first-principles results reveal a variation of magnetic properties across different materials that cannot be explained by either of the two dominant models of ferromagnetism in semiconductors. On the basis of our results for structural, electronic and magnetic properties, we identify a small number of new stable chalcopyrites with excellent prospects for ferromagnetism.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf Nc5020297ebb94bc78601d4c6101e6237
35 Nd21df260766048ac83bcf73aa17d7aa6
36 sg:journal.1031408
37 schema:name Tailoring ferromagnetic chalcopyrites
38 schema:pagination 410-414
39 schema:productId N5d48564ec9c345c888187b5983972eaa
40 N5dda232a9e3d46f3b8f329dc0ecaf01d
41 N90d444e8b31b41a0b8a1c83a45eb0d0d
42 Nca6dd47631d047d999d5add7496bb0ec
43 Nd39c34b845bc485cb4f97d86240036c0
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037179701
45 https://doi.org/10.1038/nmat1127
46 schema:sdDatePublished 2019-04-11T12:14
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N9edabd4692ce4406853a756a9248d533
49 schema:url http://www.nature.com/articles/nmat1127
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N5d48564ec9c345c888187b5983972eaa schema:name pubmed_id
54 schema:value 15146174
55 rdf:type schema:PropertyValue
56 N5dda232a9e3d46f3b8f329dc0ecaf01d schema:name dimensions_id
57 schema:value pub.1037179701
58 rdf:type schema:PropertyValue
59 N90d444e8b31b41a0b8a1c83a45eb0d0d schema:name readcube_id
60 schema:value b11c49c450e0eb7fc5ef622c71a20dc0c8a04891101bde2e2203a4cf283eb57e
61 rdf:type schema:PropertyValue
62 N9edabd4692ce4406853a756a9248d533 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nac7ff3e5de7d4317bbddf33806dc610f rdf:first sg:person.01011155323.59
65 rdf:rest rdf:nil
66 Nc5020297ebb94bc78601d4c6101e6237 schema:issueNumber 6
67 rdf:type schema:PublicationIssue
68 Nca6dd47631d047d999d5add7496bb0ec schema:name nlm_unique_id
69 schema:value 101155473
70 rdf:type schema:PropertyValue
71 Nd21df260766048ac83bcf73aa17d7aa6 schema:volumeNumber 3
72 rdf:type schema:PublicationVolume
73 Nd39c34b845bc485cb4f97d86240036c0 schema:name doi
74 schema:value 10.1038/nmat1127
75 rdf:type schema:PropertyValue
76 Nd6c4666213864d848bf490d176b9f92e rdf:first sg:person.01222557500.02
77 rdf:rest Nac7ff3e5de7d4317bbddf33806dc610f
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1031408 schema:issn 1476-1122
85 1476-4660
86 schema:name Nature Materials
87 rdf:type schema:Periodical
88 sg:person.01011155323.59 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
89 schema:familyName Žutić
90 schema:givenName Igor
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011155323.59
92 rdf:type schema:Person
93 sg:person.01222557500.02 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
94 schema:familyName Erwin
95 schema:givenName Steven C.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222557500.02
97 rdf:type schema:Person
98 sg:pub.10.1038/nmat989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026343778
99 https://doi.org/10.1038/nmat989
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0022-0248(01)02396-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006429019
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/s0038-1098(02)00094-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040241321
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.1517164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057715337
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0268-1242/16/4/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031583653
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1088/0953-8984/14/34/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042273031
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.46.10070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562437
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.46.6671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060564150
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.63.195205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018059441
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.63.245205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599989
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.66.205206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060605051
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.68.245206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034213358
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.69.075208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060608774
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.84.5628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007081623
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.87.227202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044541148
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.88.047205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040407404
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.88.257203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825021
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/revmodphys.76.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326605
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.281.5379.951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048702032
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.287.5455.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568262
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1142/p246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098928823
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1143/jjap.39.l949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063065091
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.89170.37 schema:alternateName United States Naval Research Laboratory
148 schema:name Center for Computational Materials Science, Naval Research Laboratory, Washington DC 20375, USA
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...