Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-06

AUTHORS

Y Jiang, T Nozaki, S Abe, T Ochiai, A Hirohata, N Tezuka, K Inomata

ABSTRACT

Great interest in current-induced magnetic excitation and switching in a magnetic nanopillar has been caused by the theoretical predictions of these phenomena. The concept of using a spin-polarized current to switch the magnetization orientation of a magnetic layer provides a possible way to realize future 'current-driven' devices: in such devices, direct switching of the magnetic memory bits would be produced by a local current application, instead of by a magnetic field generated by attached wires. Until now, all the reported work on current-induced magnetization switching has been concentrated on a simple ferromagnet/Cu/ferromagnet trilayer. Here we report the observation of current-induced magnetization switching in exchange-biased spin valves (ESPVs) at room temperature. The ESPVs clearly show current-induced magnetization switching behaviour under a sweeping direct current with a very high density. We show that insertion of a ruthenium layer between an ESPV nanopillar and the top electrode effectively decreases the critical current density from about 10(8) to 10(7) A cm(-2). In a well-designed 'antisymmetric' ESPV structure, this critical current density can be further reduced to 2 x 10(6) A cm(-2). We believe that the substantial reduction of critical current could make it possible for current-induced magnetization switching to be directly applied in spintronic devices, such as magnetic random-access memory. More... »

PAGES

361-364

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nmat1120

DOI

http://dx.doi.org/10.1038/nmat1120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039970430

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15133504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Department of Materials Science, Graduate School of Engineering, Tohoku University, and CREST, Japan Science and Technology Agency, Sendai 980-8579, Japan. yjiang@material.tohoku.ac.jp"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Y", 
        "id": "sg:person.01071730262.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071730262.75"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Nozaki", 
        "givenName": "T", 
        "id": "sg:person.01255347277.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255347277.07"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Abe", 
        "givenName": "S", 
        "id": "sg:person.01063037026.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063037026.20"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Ochiai", 
        "givenName": "T", 
        "id": "sg:person.01131152226.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131152226.02"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hirohata", 
        "givenName": "A", 
        "id": "sg:person.01245400626.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245400626.17"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Tezuka", 
        "givenName": "N", 
        "id": "sg:person.014033777221.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033777221.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Inomata", 
        "givenName": "K", 
        "id": "sg:person.014517703471.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014517703471.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002331710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016807729", 
          "https://doi.org/10.1038/35017512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016807729", 
          "https://doi.org/10.1038/35017512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1651645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019801099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.236601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028342350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.236601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028342350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053023589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.014407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053023589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1364636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057699228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1476065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057710338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1499744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057713178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1555771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057719217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1569044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057721241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1604936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057724978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.9353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.224426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5429.867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566192"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "Great interest in current-induced magnetic excitation and switching in a magnetic nanopillar has been caused by the theoretical predictions of these phenomena. The concept of using a spin-polarized current to switch the magnetization orientation of a magnetic layer provides a possible way to realize future 'current-driven' devices: in such devices, direct switching of the magnetic memory bits would be produced by a local current application, instead of by a magnetic field generated by attached wires. Until now, all the reported work on current-induced magnetization switching has been concentrated on a simple ferromagnet/Cu/ferromagnet trilayer. Here we report the observation of current-induced magnetization switching in exchange-biased spin valves (ESPVs) at room temperature. The ESPVs clearly show current-induced magnetization switching behaviour under a sweeping direct current with a very high density. We show that insertion of a ruthenium layer between an ESPV nanopillar and the top electrode effectively decreases the critical current density from about 10(8) to 10(7) A cm(-2). In a well-designed 'antisymmetric' ESPV structure, this critical current density can be further reduced to 2 x 10(6) A cm(-2). We believe that the substantial reduction of critical current could make it possible for current-induced magnetization switching to be directly applied in spintronic devices, such as magnetic random-access memory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nmat1120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5834794", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5827173", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031408", 
        "issn": [
          "1476-1122", 
          "1476-4660"
        ], 
        "name": "Nature Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve", 
    "pagination": "361-364", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be673f1c4b1596e6a8ee67d39a418dcecca86e793811213f17fcc537ea429da5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15133504"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101155473"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nmat1120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039970430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nmat1120", 
      "https://app.dimensions.ai/details/publication/pub.1039970430"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53984_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nmat/journal/v3/n6/full/nmat1120.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1120'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nmat1120 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne631cb964eb741b6815bbeb9321a7946
4 schema:citation sg:pub.10.1038/35017512
5 https://doi.org/10.1016/0304-8853(96)00062-5
6 https://doi.org/10.1063/1.125053
7 https://doi.org/10.1063/1.1364636
8 https://doi.org/10.1063/1.1476065
9 https://doi.org/10.1063/1.1499744
10 https://doi.org/10.1063/1.1555771
11 https://doi.org/10.1063/1.1569044
12 https://doi.org/10.1063/1.1604936
13 https://doi.org/10.1063/1.1651645
14 https://doi.org/10.1103/physrevb.54.9353
15 https://doi.org/10.1103/physrevb.66.014407
16 https://doi.org/10.1103/physrevb.68.224426
17 https://doi.org/10.1103/physrevlett.84.3149
18 https://doi.org/10.1103/physrevlett.88.236601
19 https://doi.org/10.1126/science.285.5429.867
20 schema:datePublished 2004-06
21 schema:datePublishedReg 2004-06-01
22 schema:description Great interest in current-induced magnetic excitation and switching in a magnetic nanopillar has been caused by the theoretical predictions of these phenomena. The concept of using a spin-polarized current to switch the magnetization orientation of a magnetic layer provides a possible way to realize future 'current-driven' devices: in such devices, direct switching of the magnetic memory bits would be produced by a local current application, instead of by a magnetic field generated by attached wires. Until now, all the reported work on current-induced magnetization switching has been concentrated on a simple ferromagnet/Cu/ferromagnet trilayer. Here we report the observation of current-induced magnetization switching in exchange-biased spin valves (ESPVs) at room temperature. The ESPVs clearly show current-induced magnetization switching behaviour under a sweeping direct current with a very high density. We show that insertion of a ruthenium layer between an ESPV nanopillar and the top electrode effectively decreases the critical current density from about 10(8) to 10(7) A cm(-2). In a well-designed 'antisymmetric' ESPV structure, this critical current density can be further reduced to 2 x 10(6) A cm(-2). We believe that the substantial reduction of critical current could make it possible for current-induced magnetization switching to be directly applied in spintronic devices, such as magnetic random-access memory.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Na1ffef2b36a845a48e5108b4f288ba93
27 Na8603037ac1e4b239039d33173cf7ad8
28 sg:journal.1031408
29 schema:name Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve
30 schema:pagination 361-364
31 schema:productId N4a4c36f1f87445d28a1dd81737d5be1e
32 N67c040b4163a41848aad72265fa1add0
33 N735d4c4a5b614b0a989fd04cb8ac1809
34 Nc8ca48cb5a4948199a66da97b7e34c36
35 Ne8b9122307ef4499a9fb3e3510ba95fb
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970430
37 https://doi.org/10.1038/nmat1120
38 schema:sdDatePublished 2019-04-11T12:11
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N02fa9a7e0d38438bb43284d1d32b7773
41 schema:url http://www.nature.com/nmat/journal/v3/n6/full/nmat1120.html
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N02fa9a7e0d38438bb43284d1d32b7773 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N327d98c236594538b4d46526b60c837b rdf:first sg:person.014517703471.11
48 rdf:rest rdf:nil
49 N4a4c36f1f87445d28a1dd81737d5be1e schema:name dimensions_id
50 schema:value pub.1039970430
51 rdf:type schema:PropertyValue
52 N67c040b4163a41848aad72265fa1add0 schema:name nlm_unique_id
53 schema:value 101155473
54 rdf:type schema:PropertyValue
55 N735d4c4a5b614b0a989fd04cb8ac1809 schema:name pubmed_id
56 schema:value 15133504
57 rdf:type schema:PropertyValue
58 N7730b74606b74afbb1141b0d829d0672 rdf:first sg:person.01063037026.20
59 rdf:rest N8c2828a09a354f2e9e7fc23371dc66d3
60 N8c2828a09a354f2e9e7fc23371dc66d3 rdf:first sg:person.01131152226.02
61 rdf:rest Nf6917febbcc7442f96a9f9e7ff308b4b
62 Na1ffef2b36a845a48e5108b4f288ba93 schema:issueNumber 6
63 rdf:type schema:PublicationIssue
64 Na8603037ac1e4b239039d33173cf7ad8 schema:volumeNumber 3
65 rdf:type schema:PublicationVolume
66 Na8939b52665844d692460bed7cf99579 rdf:first sg:person.014033777221.03
67 rdf:rest N327d98c236594538b4d46526b60c837b
68 Nb51f476ff6bc4d01bd9c3cfd63445e29 rdf:first sg:person.01255347277.07
69 rdf:rest N7730b74606b74afbb1141b0d829d0672
70 Nc8ca48cb5a4948199a66da97b7e34c36 schema:name readcube_id
71 schema:value be673f1c4b1596e6a8ee67d39a418dcecca86e793811213f17fcc537ea429da5
72 rdf:type schema:PropertyValue
73 Ne631cb964eb741b6815bbeb9321a7946 rdf:first sg:person.01071730262.75
74 rdf:rest Nb51f476ff6bc4d01bd9c3cfd63445e29
75 Ne8b9122307ef4499a9fb3e3510ba95fb schema:name doi
76 schema:value 10.1038/nmat1120
77 rdf:type schema:PropertyValue
78 Nf6917febbcc7442f96a9f9e7ff308b4b rdf:first sg:person.01245400626.17
79 rdf:rest Na8939b52665844d692460bed7cf99579
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:grant.5827173 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1120
87 rdf:type schema:MonetaryGrant
88 sg:grant.5834794 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1120
89 rdf:type schema:MonetaryGrant
90 sg:journal.1031408 schema:issn 1476-1122
91 1476-4660
92 schema:name Nature Materials
93 rdf:type schema:Periodical
94 sg:person.01063037026.20 schema:familyName Abe
95 schema:givenName S
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063037026.20
97 rdf:type schema:Person
98 sg:person.01071730262.75 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
99 schema:familyName Jiang
100 schema:givenName Y
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071730262.75
102 rdf:type schema:Person
103 sg:person.01131152226.02 schema:familyName Ochiai
104 schema:givenName T
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131152226.02
106 rdf:type schema:Person
107 sg:person.01245400626.17 schema:familyName Hirohata
108 schema:givenName A
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245400626.17
110 rdf:type schema:Person
111 sg:person.01255347277.07 schema:familyName Nozaki
112 schema:givenName T
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255347277.07
114 rdf:type schema:Person
115 sg:person.014033777221.03 schema:familyName Tezuka
116 schema:givenName N
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014033777221.03
118 rdf:type schema:Person
119 sg:person.014517703471.11 schema:familyName Inomata
120 schema:givenName K
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014517703471.11
122 rdf:type schema:Person
123 sg:pub.10.1038/35017512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016807729
124 https://doi.org/10.1038/35017512
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.125053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689177
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.1364636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057699228
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.1476065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057710338
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1499744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057713178
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.1555771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057719217
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.1569044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057721241
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.1604936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057724978
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.1651645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019801099
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.54.9353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582968
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevb.66.014407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053023589
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevb.68.224426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060608225
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.84.3149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002331710
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.88.236601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028342350
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
157 schema:name Department of Materials Science, Graduate School of Engineering, Tohoku University, and CREST, Japan Science and Technology Agency, Sendai 980-8579, Japan. yjiang@material.tohoku.ac.jp
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...