Atomic layer deposition of transition metals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-11

AUTHORS

Booyong S. Lim, Antti Rahtu, Roy G. Gordon

ABSTRACT

Atomic layer deposition (ALD) is a process for depositing highly uniform and conformal thin films by alternating exposures of a surface to vapours of two chemical reactants. ALD processes have been successfully demonstrated for many metal compounds, but for only very few pure metals. Here we demonstrate processes for the ALD of transition metals including copper, cobalt, iron and nickel. Homoleptic N,N'-dialkylacetamidinato metal compounds and molecular hydrogen gas were used as the reactants. Their surface reactions were found to be complementary and self-limiting, thus providing highly uniform thicknesses and conformal coating of long, narrow holes. We propose that these ALD layers grow by a hydrogenation mechanism that should also operate during the ALD of many other metals. The use of water vapour in place of hydrogen gas gives highly uniform, conformal films of metal oxides, including lanthanum oxide. These processes should permit the improved production of many devices for which the ALD process has previously not been applicable. More... »

PAGES

749-754

Journal

TITLE

Nature Materials

ISSUE

11

VOLUME

2

Author Affiliations

Related Patents

  • Tantalum Amido-Complexes With Chelate Ligands Useful For Cvd And Ald Of Tan And Ta205 Thin Films
  • Method For Forming Cobalt Nitride Cap Layers
  • Surface Preparation For Thin Film Growth By Enhanced Nucleation
  • Diffusion Barrier And Adhesion Layer For An Interconnect Structure
  • Proximity Head Heating Method And Apparatus
  • System Method And Apparatus For Dry-In, Dry-Out, Low Defect Laser Dicing Using Proximity Technology
  • Bicyclic Guanidines, Metal Complexes Thereof And Their Use In Vapor Deposition
  • Synthesis And Characterization Of First Row Transition Metal Complexes Containing Α-Keto Hydrazonate Ligands As Potential Precursors For Use In Metal Film Deposition
  • Process For Forming Cobalt And Cobalt Silicide Materials In Tungsten Contact Applications
  • Chemical Vapor Deposition Material And Chemical Vapor Deposition
  • Diffusion Barrier For Integrated Circuits Formed From A Layer Of Reactive Metal And Method Of Fabrication
  • Method And Apparatus For Processing Wafer Surfaces Using Thin, High Velocity Fluid Layer
  • Copper (I) Compounds Useful As Deposition Precursors Of Copper Thin Films
  • Deposition And Reduction Of Mixed Metal Oxide Thin Films
  • Self-Limiting Thin Film Synthesis Achieved By Pulsed Plasma-Enhanced Chemical Vapor Deposition
  • Methods For Coating And Filling High Aspect Ratio Recessed Features
  • Organometallic Compounds
  • Method And Apparatus For Atomic Layer Deposition (Ald) In A Proximity System
  • Copper (I) Compounds Useful As Deposition Precursors Of Copper Thin Films
  • Methods Of Forming Metal Silicides
  • Nanotube Separation Methods
  • Cobalt Base Film-Forming Method, Cobalt Base Film-Forming Material, And Novel Compound
  • Systems And Methods For Forming Metal-Containing Layers Using Vapor Deposition Processes
  • Systems And Methods For Forming Metal-Containing Layers Using Vapor Deposition Processes
  • Metal Silicide, Metal Germanide, Methods For Making The Same
  • Process For Forming Cobalt-Containing Materials
  • Single Phase Proximity Head Having A Controlled Meniscus For Treating A Substrate
  • Proximity Head With Angled Vacuum Conduit System, Apparatus And Method
  • Tantalum Amido-Complexes With Chelate Ligands Useful For Cvd And Ald Of Tan And Ta205 Thin Films
  • Method For Forming Cobalt Tungsten Cap Layers
  • Cobalt Deposition On Barrier Surfaces
  • Atomic Layer Deposition Of Transition Metal Thin Films
  • Method Of Forming Metal Thin Film
  • Method Of Manufacturing A Memory Device
  • Atomic Layer Deposition Using Metal Amidinates
  • Substrate Meniscus Interface And Methods For Operation
  • Atomic Layer Deposition Of Metal-Containing Films Using Surface-Activating Agents
  • Substrate Proximity Processing Housing And Insert For Generating A Fluid Meniscus
  • Apparatus And Method For Depositing And Planarizing Thin Films Of Semiconductor Wafers
  • Method And Apparatus For Drying Semiconductor Wafer Surfaces Using A Plurality Of Inlets And Outlets Held In Close Proximity To The Wafer Surfaces
  • Bis(Trimethylsilyl) Six-Membered Ring Systems And Related Compounds As Reducing Agents For Forming Layers On A Substrate
  • Silicided Recessed Silicon
  • Bis(Trimethylsilyl) Six-Membered Ring Systems And Related Compounds As Reducing Agents For Forming Layers On A Substrate
  • Process For Forming Cobalt And Cobalt Silicide Materials In Tungsten Contact Applications
  • Atomic Layer Deposition Of Transition Metal Thin Films
  • Thermally Stable Volatile Precursors
  • Methods Of Fabricating A Memory Device
  • Atomic Layer Deposition Using Metal Amidinates
  • Method Of Fabricating A Carbon Nanotube Interconnect Structures
  • Metal Precursors Containing Beta-Diketiminato Ligands
  • Cobalt Deposition On Barrier Surfaces
  • Thermally Stable Volatile Film Precursors
  • System, Method And Apparatus For Maintaining Separation Of Liquids In A Controlled Meniscus
  • Metal Silicide, Metal Germanide, Methods For Making The Same
  • Peripheral Gate Stacks And Recessed Array Gates
  • Simplified Pitch Doubling Process Flow
  • Nonvolatile Memory Device And Method Of Manufacturing The Same
  • Method Of Forming Aluminum-Doped Metal Carbonitride Gate Electrodes
  • Substrate Brush Scrubbing And Proximity Cleaning-Drying Sequence Using Compatible Chemistries, And Method, Apparatus, And System For Implementing The Same
  • System For Substrate Processing With Meniscus, Vacuum, Ipa Vapor, Drying Manifold
  • Copper (I) Compounds Useful As Deposition Precursors Of Copper Thin Films
  • Ultrathin Platinum Films
  • Nanotube Separation Methods
  • Extended Contact Area Using Undercut Silicide Extensions
  • Synthesis And Characterization Of First Row Transition Metal Complexes Containing Α-Imino Alkoxides As Precursors For Deposition Of Metal Films
  • Selective Silicide Process
  • Peripheral Gate Stacks And Recessed Array Gates
  • Methods Of Fabricating A Memory Device
  • Thermally Stable Volatile Precursors
  • Proximity Substrate Preparation Sequence, And Method, Apparatus, And System For Implementing The Same
  • Atomic Layer Deposition Using Metal Amidinates
  • Process For Forming Cobalt-Containing Materials
  • Proximity Meniscus Manifold
  • Controls Of Ambient Environment During Wafer Drying Using Proximity Head
  • Simplified Pitch Doubling Process Flow
  • Film Forming Method And Storage Medium
  • Thermally Stable Volatile Precursors
  • Methods For Depositing Nickel Films And For Making Nickel Silicide And Nickel Germanide
  • Simplified Pitch Doubling Process Flow
  • Cobalt Deposition On Barrier Surfaces
  • Semiconductor Device Containing An Aluminum Tantalum Carbonitride Barrier Film And Method Of Forming
  • Smoothing Agents To Enhance Nucleation Density In Thin Film Chemical Vapor Deposition
  • Methods For Depositing Nickel Films And For Making Nickel Silicide And Nickel Germanide
  • Amidinate Ligand Containing Chemical Vapor Deposition Precursors
  • Method And Apparatus For Physical Confinement Of A Liquid Meniscus Over A Semiconductor Wafer
  • Organometallic Complexes And Their Use As Precursors To Deposit Metal Films
  • Simplified Pitch Doubling Process Flow
  • Nanotube Separation Methods
  • Simplified Pitch Doubling Process Flow
  • Process To Grow Carbon Nanotubes Onto Fibers
  • Cobalt Deposition On Barrier Surfaces
  • Enhancing Catalytic Activity Of Nanoporous Materials
  • Method And Apparatus For Cleaning A Substrate Using Megasonic Power
  • Meniscus, Vacuum, Ipa Vapor, Drying Manifold
  • Apparatus And Method For Providing A Confined Liquid For Immersion Lithography
  • Methods Of Fabricating A Memory Device
  • Memory Device
  • Surface Preparation For Thin Film Growth By Enhanced Nucleation
  • Methods Of And Apparatus For Accessing A Process Chamber Using A Dual Zone Gas Injector With Improved Optical Access
  • Method Of Forming A Diffusion Barrier And Adhesion Layer For An Interconnect Structure
  • Reclaim Chemistry
  • Hybrid Composite Wafer Carrier For Wet Clean Equipment
  • Cobalt Base Film-Forming Method, Cobalt Base Film-Forming Material, And Novel Compound
  • Doped Metal Germanide And Methods For Making The Same
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat1000

    DOI

    http://dx.doi.org/10.1038/nmat1000

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045826707

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/14578877


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adsorption", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cobalt", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Copper", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "History, Ancient", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hot Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Iron", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membranes, Artificial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nickel", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transition Elements", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lim", 
            "givenName": "Booyong S.", 
            "id": "sg:person.01116715171.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116715171.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rahtu", 
            "givenName": "Antti", 
            "id": "sg:person.01021632321.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021632321.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordon", 
            "givenName": "Roy G.", 
            "id": "sg:person.012651422732.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651422732.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0040-6090(99)01076-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002292166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007376724", 
              "https://doi.org/10.1038/35023243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007376724", 
              "https://doi.org/10.1038/35023243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cvde.200390005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017605080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cvde.200290007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029705092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0039-6028(01)00969-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033953362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1073552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049194967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1838738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049978150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm021333t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055409620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm021333t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055409620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ic0345424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055555841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ic0345424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055555841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/om9706323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056284390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1565699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057720848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1305809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062164106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1469009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062167248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1486233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062167395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1513636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062167997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108494442", 
              "https://doi.org/10.1007/978-94-009-0389-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108494442", 
              "https://doi.org/10.1007/978-94-009-0389-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-11", 
        "datePublishedReg": "2003-11-01", 
        "description": "Atomic layer deposition (ALD) is a process for depositing highly uniform and conformal thin films by alternating exposures of a surface to vapours of two chemical reactants. ALD processes have been successfully demonstrated for many metal compounds, but for only very few pure metals. Here we demonstrate processes for the ALD of transition metals including copper, cobalt, iron and nickel. Homoleptic N,N'-dialkylacetamidinato metal compounds and molecular hydrogen gas were used as the reactants. Their surface reactions were found to be complementary and self-limiting, thus providing highly uniform thicknesses and conformal coating of long, narrow holes. We propose that these ALD layers grow by a hydrogenation mechanism that should also operate during the ALD of many other metals. The use of water vapour in place of hydrogen gas gives highly uniform, conformal films of metal oxides, including lanthanum oxide. These processes should permit the improved production of many devices for which the ALD process has previously not been applicable.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat1000", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3476114", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Atomic layer deposition of transition metals", 
        "pagination": "749-754", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "da4abb05bc86eb563d9dcd791077574f39eceb281f365abc48c0dc34002faac2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "14578877"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat1000"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045826707"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat1000", 
          "https://app.dimensions.ai/details/publication/pub.1045826707"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmat1000"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      21 PREDICATES      61 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat1000 schema:about N14ce9fb6f21f44ebaa1ead29a8f1c2ed
    2 N225562e1298344b4989839a48c3d55ec
    3 N30c24868590e4eb896236f14ae6862da
    4 N4248cb352094403eabb06fe300ed4442
    5 N4daac0086f0d48679a35967e030d3dff
    6 N54fb313f4dc84be2b3fb9fb8b488839a
    7 N66324c64ff8347c0a585737812c33ef3
    8 N7a2a00bd43db495f80b76be6f59bef12
    9 N80eec630daa5413db709cc474633735a
    10 N97ff6e23cfef4367a3b8e939bf313912
    11 Nb3793c27ee5c4f6185fa99798b8d87ab
    12 Nb893e0ac1280427c9e57563727b7a371
    13 Nbbc18d2b437e4756aba7e5427e79e57d
    14 Ne643f500718c46ffaf356a62f2e80352
    15 Nf4d6b0c2e4d84881961c360ea5a52608
    16 Nfcfb52830e6144f5b4047beb99fb8aee
    17 anzsrc-for:03
    18 anzsrc-for:0306
    19 schema:author N6e084f584c9c47879403ad6cdcf2191d
    20 schema:citation sg:pub.10.1007/978-94-009-0389-0
    21 sg:pub.10.1038/35023243
    22 https://doi.org/10.1002/cvde.200290007
    23 https://doi.org/10.1002/cvde.200390005
    24 https://doi.org/10.1016/s0039-6028(01)00969-4
    25 https://doi.org/10.1016/s0040-6090(99)01076-7
    26 https://doi.org/10.1021/cm021333t
    27 https://doi.org/10.1021/ic0345424
    28 https://doi.org/10.1021/om9706323
    29 https://doi.org/10.1063/1.1565699
    30 https://doi.org/10.1116/1.1305809
    31 https://doi.org/10.1116/1.1469009
    32 https://doi.org/10.1116/1.1486233
    33 https://doi.org/10.1116/1.1513636
    34 https://doi.org/10.1126/science.1073552
    35 https://doi.org/10.1149/1.1838738
    36 schema:datePublished 2003-11
    37 schema:datePublishedReg 2003-11-01
    38 schema:description Atomic layer deposition (ALD) is a process for depositing highly uniform and conformal thin films by alternating exposures of a surface to vapours of two chemical reactants. ALD processes have been successfully demonstrated for many metal compounds, but for only very few pure metals. Here we demonstrate processes for the ALD of transition metals including copper, cobalt, iron and nickel. Homoleptic N,N'-dialkylacetamidinato metal compounds and molecular hydrogen gas were used as the reactants. Their surface reactions were found to be complementary and self-limiting, thus providing highly uniform thicknesses and conformal coating of long, narrow holes. We propose that these ALD layers grow by a hydrogenation mechanism that should also operate during the ALD of many other metals. The use of water vapour in place of hydrogen gas gives highly uniform, conformal films of metal oxides, including lanthanum oxide. These processes should permit the improved production of many devices for which the ALD process has previously not been applicable.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N363b91822ff84c14af9941f5e538a158
    43 N7379b8761d58487987728beb6b223430
    44 sg:journal.1031408
    45 schema:name Atomic layer deposition of transition metals
    46 schema:pagination 749-754
    47 schema:productId N21cf47556e02497f91992bbb4fcf8b16
    48 N670c1b3745ab4f10a4dcaeab527296c3
    49 N71585d5a774b4f7ba7425a5f7e106af1
    50 N75ce039c73e249fcbc09f11290e6838d
    51 Ncd4c326688094db591c8121bd21bd4b0
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045826707
    53 https://doi.org/10.1038/nmat1000
    54 schema:sdDatePublished 2019-04-11T11:54
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nb90d348807144cc4bae8009e0c83283b
    57 schema:url http://www.nature.com/articles/nmat1000
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N14ce9fb6f21f44ebaa1ead29a8f1c2ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Nickel
    63 rdf:type schema:DefinedTerm
    64 N21cf47556e02497f91992bbb4fcf8b16 schema:name doi
    65 schema:value 10.1038/nmat1000
    66 rdf:type schema:PropertyValue
    67 N225562e1298344b4989839a48c3d55ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name Molecular Conformation
    69 rdf:type schema:DefinedTerm
    70 N30c24868590e4eb896236f14ae6862da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Adsorption
    72 rdf:type schema:DefinedTerm
    73 N363b91822ff84c14af9941f5e538a158 schema:issueNumber 11
    74 rdf:type schema:PublicationIssue
    75 N4248cb352094403eabb06fe300ed4442 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Materials Testing
    77 rdf:type schema:DefinedTerm
    78 N49e7851d700e4196b6c02204c5debb1a rdf:first sg:person.012651422732.40
    79 rdf:rest rdf:nil
    80 N4daac0086f0d48679a35967e030d3dff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name History, Ancient
    82 rdf:type schema:DefinedTerm
    83 N54fb313f4dc84be2b3fb9fb8b488839a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Hot Temperature
    85 rdf:type schema:DefinedTerm
    86 N66324c64ff8347c0a585737812c33ef3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Iron
    88 rdf:type schema:DefinedTerm
    89 N670c1b3745ab4f10a4dcaeab527296c3 schema:name dimensions_id
    90 schema:value pub.1045826707
    91 rdf:type schema:PropertyValue
    92 N6e084f584c9c47879403ad6cdcf2191d rdf:first sg:person.01116715171.42
    93 rdf:rest Nd898f39c376142d8b3ad24fab43ea669
    94 N71585d5a774b4f7ba7425a5f7e106af1 schema:name readcube_id
    95 schema:value da4abb05bc86eb563d9dcd791077574f39eceb281f365abc48c0dc34002faac2
    96 rdf:type schema:PropertyValue
    97 N7379b8761d58487987728beb6b223430 schema:volumeNumber 2
    98 rdf:type schema:PublicationVolume
    99 N75ce039c73e249fcbc09f11290e6838d schema:name nlm_unique_id
    100 schema:value 101155473
    101 rdf:type schema:PropertyValue
    102 N7a2a00bd43db495f80b76be6f59bef12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Macromolecular Substances
    104 rdf:type schema:DefinedTerm
    105 N80eec630daa5413db709cc474633735a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Cobalt
    107 rdf:type schema:DefinedTerm
    108 N97ff6e23cfef4367a3b8e939bf313912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Metals
    110 rdf:type schema:DefinedTerm
    111 Nb3793c27ee5c4f6185fa99798b8d87ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Membranes, Artificial
    113 rdf:type schema:DefinedTerm
    114 Nb893e0ac1280427c9e57563727b7a371 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Transition Elements
    116 rdf:type schema:DefinedTerm
    117 Nb90d348807144cc4bae8009e0c83283b schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 Nbbc18d2b437e4756aba7e5427e79e57d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Copper
    121 rdf:type schema:DefinedTerm
    122 Ncd4c326688094db591c8121bd21bd4b0 schema:name pubmed_id
    123 schema:value 14578877
    124 rdf:type schema:PropertyValue
    125 Nd898f39c376142d8b3ad24fab43ea669 rdf:first sg:person.01021632321.10
    126 rdf:rest N49e7851d700e4196b6c02204c5debb1a
    127 Ne643f500718c46ffaf356a62f2e80352 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Gases
    129 rdf:type schema:DefinedTerm
    130 Nf4d6b0c2e4d84881961c360ea5a52608 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Nanotechnology
    132 rdf:type schema:DefinedTerm
    133 Nfcfb52830e6144f5b4047beb99fb8aee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Surface Properties
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Chemical Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Physical Chemistry (incl. Structural)
    141 rdf:type schema:DefinedTerm
    142 sg:grant.3476114 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1000
    143 rdf:type schema:MonetaryGrant
    144 sg:journal.1031408 schema:issn 1476-1122
    145 1476-4660
    146 schema:name Nature Materials
    147 rdf:type schema:Periodical
    148 sg:person.01021632321.10 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    149 schema:familyName Rahtu
    150 schema:givenName Antti
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021632321.10
    152 rdf:type schema:Person
    153 sg:person.01116715171.42 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    154 schema:familyName Lim
    155 schema:givenName Booyong S.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116715171.42
    157 rdf:type schema:Person
    158 sg:person.012651422732.40 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    159 schema:familyName Gordon
    160 schema:givenName Roy G.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651422732.40
    162 rdf:type schema:Person
    163 sg:pub.10.1007/978-94-009-0389-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108494442
    164 https://doi.org/10.1007/978-94-009-0389-0
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/35023243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007376724
    167 https://doi.org/10.1038/35023243
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/cvde.200290007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029705092
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/cvde.200390005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017605080
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0039-6028(01)00969-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033953362
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0040-6090(99)01076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002292166
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1021/cm021333t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055409620
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ic0345424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055555841
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/om9706323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056284390
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1063/1.1565699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720848
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1116/1.1305809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062164106
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1116/1.1469009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062167248
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1116/1.1486233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062167395
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1116/1.1513636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062167997
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1126/science.1073552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049194967
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1149/1.1838738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049978150
    196 rdf:type schema:CreativeWork
    197 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    198 schema:name Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...