Atomic layer deposition of transition metals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-11

AUTHORS

Booyong S. Lim, Antti Rahtu, Roy G. Gordon

ABSTRACT

Atomic layer deposition (ALD) is a process for depositing highly uniform and conformal thin films by alternating exposures of a surface to vapours of two chemical reactants. ALD processes have been successfully demonstrated for many metal compounds, but for only very few pure metals. Here we demonstrate processes for the ALD of transition metals including copper, cobalt, iron and nickel. Homoleptic N,N'-dialkylacetamidinato metal compounds and molecular hydrogen gas were used as the reactants. Their surface reactions were found to be complementary and self-limiting, thus providing highly uniform thicknesses and conformal coating of long, narrow holes. We propose that these ALD layers grow by a hydrogenation mechanism that should also operate during the ALD of many other metals. The use of water vapour in place of hydrogen gas gives highly uniform, conformal films of metal oxides, including lanthanum oxide. These processes should permit the improved production of many devices for which the ALD process has previously not been applicable. More... »

PAGES

749-754

References to SciGraph publications

Journal

TITLE

Nature Materials

ISSUE

11

VOLUME

2

Author Affiliations

Related Patents

  • Method For Forming Cobalt Tungsten Cap Layers
  • Cobalt Deposition On Barrier Surfaces
  • Method Of Manufacturing A Memory Device
  • Bis(Trimethylsilyl) Six-Membered Ring Systems And Related Compounds As Reducing Agents For Forming Layers On A Substrate
  • Atomic Layer Deposition Of Metal-Containing Films Using Surface-Activating Agents
  • Atomic Layer Deposition Using Metal Amidinates
  • Substrate Meniscus Interface And Methods For Operation
  • Process For Forming Cobalt-Containing Materials
  • Tantalum Amido-Complexes With Chelate Ligands Useful For Cvd And Ald Of Tan And Ta205 Thin Films
  • Method Of Forming Metal Thin Film
  • Single Phase Proximity Head Having A Controlled Meniscus For Treating A Substrate
  • Proximity Head With Angled Vacuum Conduit System, Apparatus And Method
  • Atomic Layer Deposition Of Transition Metal Thin Films
  • Silicided Recessed Silicon
  • Apparatus And Method For Depositing And Planarizing Thin Films Of Semiconductor Wafers
  • Method And Apparatus For Drying Semiconductor Wafer Surfaces Using A Plurality Of Inlets And Outlets Held In Close Proximity To The Wafer Surfaces
  • Substrate Proximity Processing Housing And Insert For Generating A Fluid Meniscus
  • Bis(Trimethylsilyl) Six-Membered Ring Systems And Related Compounds As Reducing Agents For Forming Layers On A Substrate
  • Process For Forming Cobalt And Cobalt Silicide Materials In Tungsten Contact Applications
  • Atomic Layer Deposition Of Transition Metal Thin Films
  • Nonvolatile Memory Device And Method Of Manufacturing The Same
  • Peripheral Gate Stacks And Recessed Array Gates
  • Method Of Forming Aluminum-Doped Metal Carbonitride Gate Electrodes
  • Simplified Pitch Doubling Process Flow
  • Metal Silicide, Metal Germanide, Methods For Making The Same
  • Methods Of Fabricating A Memory Device
  • Thermally Stable Volatile Precursors
  • System For Substrate Processing With Meniscus, Vacuum, Ipa Vapor, Drying Manifold
  • Copper (I) Compounds Useful As Deposition Precursors Of Copper Thin Films
  • Extended Contact Area Using Undercut Silicide Extensions
  • Ultrathin Platinum Films
  • Atomic Layer Deposition Using Metal Amidinates
  • System, Method And Apparatus For Maintaining Separation Of Liquids In A Controlled Meniscus
  • Substrate Brush Scrubbing And Proximity Cleaning-Drying Sequence Using Compatible Chemistries, And Method, Apparatus, And System For Implementing The Same
  • Thermally Stable Volatile Precursors
  • Method Of Fabricating A Carbon Nanotube Interconnect Structures
  • Methods Of Fabricating A Memory Device
  • Cobalt Deposition On Barrier Surfaces
  • Thermally Stable Volatile Film Precursors
  • Nanotube Separation Methods
  • Selective Silicide Process
  • Peripheral Gate Stacks And Recessed Array Gates
  • Metal Precursors Containing Beta-Diketiminato Ligands
  • Synthesis And Characterization Of First Row Transition Metal Complexes Containing Α-Imino Alkoxides As Precursors For Deposition Of Metal Films
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nmat1000

    DOI

    http://dx.doi.org/10.1038/nmat1000

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045826707

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/14578877


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adsorption", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cobalt", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Copper", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "History, Ancient", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hot Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Iron", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Macromolecular Substances", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Materials Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Membranes, Artificial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Conformation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nickel", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surface Properties", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transition Elements", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lim", 
            "givenName": "Booyong S.", 
            "id": "sg:person.01116715171.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116715171.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rahtu", 
            "givenName": "Antti", 
            "id": "sg:person.01021632321.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021632321.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordon", 
            "givenName": "Roy G.", 
            "id": "sg:person.012651422732.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651422732.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0040-6090(99)01076-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002292166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007376724", 
              "https://doi.org/10.1038/35023243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35023243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007376724", 
              "https://doi.org/10.1038/35023243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cvde.200390005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017605080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cvde.200290007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029705092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0039-6028(01)00969-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033953362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1073552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049194967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.1838738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049978150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm021333t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055409620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm021333t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055409620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ic0345424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055555841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ic0345424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055555841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/om9706323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056284390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1565699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057720848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1305809", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062164106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1469009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062167248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1486233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062167395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1116/1.1513636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062167997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108494442", 
              "https://doi.org/10.1007/978-94-009-0389-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-0389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108494442", 
              "https://doi.org/10.1007/978-94-009-0389-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-11", 
        "datePublishedReg": "2003-11-01", 
        "description": "Atomic layer deposition (ALD) is a process for depositing highly uniform and conformal thin films by alternating exposures of a surface to vapours of two chemical reactants. ALD processes have been successfully demonstrated for many metal compounds, but for only very few pure metals. Here we demonstrate processes for the ALD of transition metals including copper, cobalt, iron and nickel. Homoleptic N,N'-dialkylacetamidinato metal compounds and molecular hydrogen gas were used as the reactants. Their surface reactions were found to be complementary and self-limiting, thus providing highly uniform thicknesses and conformal coating of long, narrow holes. We propose that these ALD layers grow by a hydrogenation mechanism that should also operate during the ALD of many other metals. The use of water vapour in place of hydrogen gas gives highly uniform, conformal films of metal oxides, including lanthanum oxide. These processes should permit the improved production of many devices for which the ALD process has previously not been applicable.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nmat1000", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3476114", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031408", 
            "issn": [
              "1476-1122", 
              "1476-4660"
            ], 
            "name": "Nature Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "Atomic layer deposition of transition metals", 
        "pagination": "749-754", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "da4abb05bc86eb563d9dcd791077574f39eceb281f365abc48c0dc34002faac2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "14578877"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101155473"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nmat1000"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045826707"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nmat1000", 
          "https://app.dimensions.ai/details/publication/pub.1045826707"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29203_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nmat1000"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nmat1000'


     

    This table displays all metadata directly associated to this object as RDF triples.

    199 TRIPLES      21 PREDICATES      61 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nmat1000 schema:about N062e51e6e40944b98e538f2c8dadf6c0
    2 N24fecc21e9b64c38803e5f3bb7460263
    3 N276e680f7cd44e14b2aed6b7a60be9fa
    4 N316718f157a34521bafa513c9083245a
    5 N4dfb368f2b694b4bb1a757c976c14f52
    6 N5f743a7b75954c43936374c87d7919bb
    7 N6d5d2f057aec47648a5c787400984569
    8 N81d2865b33c94ee7ae2cbb6ef8a73675
    9 N88cdb08414bd4110b1a254e05987d5d5
    10 N90fdc9490bc44eeba62a0f3648163efe
    11 N9f29ce6483354da193959fb24f9e39fa
    12 Nceacc1073aa3498e9e817fd85ea6ba9e
    13 Nd07d9561662c4949a40101d2eb8f7b13
    14 Ndd6016e26783488e888a9552f63764cc
    15 Ne79157b796db429b84366250a39a2176
    16 Nf2782b533299426ca20f2e31b62fbecf
    17 anzsrc-for:03
    18 anzsrc-for:0306
    19 schema:author N3b2c2150d9354de78d6c6e21cea093b9
    20 schema:citation sg:pub.10.1007/978-94-009-0389-0
    21 sg:pub.10.1038/35023243
    22 https://doi.org/10.1002/cvde.200290007
    23 https://doi.org/10.1002/cvde.200390005
    24 https://doi.org/10.1016/s0039-6028(01)00969-4
    25 https://doi.org/10.1016/s0040-6090(99)01076-7
    26 https://doi.org/10.1021/cm021333t
    27 https://doi.org/10.1021/ic0345424
    28 https://doi.org/10.1021/om9706323
    29 https://doi.org/10.1063/1.1565699
    30 https://doi.org/10.1116/1.1305809
    31 https://doi.org/10.1116/1.1469009
    32 https://doi.org/10.1116/1.1486233
    33 https://doi.org/10.1116/1.1513636
    34 https://doi.org/10.1126/science.1073552
    35 https://doi.org/10.1149/1.1838738
    36 schema:datePublished 2003-11
    37 schema:datePublishedReg 2003-11-01
    38 schema:description Atomic layer deposition (ALD) is a process for depositing highly uniform and conformal thin films by alternating exposures of a surface to vapours of two chemical reactants. ALD processes have been successfully demonstrated for many metal compounds, but for only very few pure metals. Here we demonstrate processes for the ALD of transition metals including copper, cobalt, iron and nickel. Homoleptic N,N'-dialkylacetamidinato metal compounds and molecular hydrogen gas were used as the reactants. Their surface reactions were found to be complementary and self-limiting, thus providing highly uniform thicknesses and conformal coating of long, narrow holes. We propose that these ALD layers grow by a hydrogenation mechanism that should also operate during the ALD of many other metals. The use of water vapour in place of hydrogen gas gives highly uniform, conformal films of metal oxides, including lanthanum oxide. These processes should permit the improved production of many devices for which the ALD process has previously not been applicable.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N47700b59c9084630a62a042236a91830
    43 Nc52fed415f9a43019e8955f54b1bcfab
    44 sg:journal.1031408
    45 schema:name Atomic layer deposition of transition metals
    46 schema:pagination 749-754
    47 schema:productId N50ca401bc88c4b4cb06d480fcd3ccd94
    48 N5f34d7dbe26441428eead22784c46899
    49 Nb1b05bf66e2348df8b6fdf787962ebac
    50 Nbfd7278dd6c74a4c9821e81b2db59ec4
    51 Nfeab3af4c8c945e3b9a295af3c39061c
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045826707
    53 https://doi.org/10.1038/nmat1000
    54 schema:sdDatePublished 2019-04-11T11:54
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N4be2d9d66bcf4bd0ae4aebe8d2b6d1b3
    57 schema:url http://www.nature.com/articles/nmat1000
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N062e51e6e40944b98e538f2c8dadf6c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    62 schema:name Iron
    63 rdf:type schema:DefinedTerm
    64 N0a8d4f232fe64d57945ad1f2f055d8ea rdf:first sg:person.012651422732.40
    65 rdf:rest rdf:nil
    66 N24fecc21e9b64c38803e5f3bb7460263 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Materials Testing
    68 rdf:type schema:DefinedTerm
    69 N276e680f7cd44e14b2aed6b7a60be9fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Adsorption
    71 rdf:type schema:DefinedTerm
    72 N316718f157a34521bafa513c9083245a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Nickel
    74 rdf:type schema:DefinedTerm
    75 N3b2c2150d9354de78d6c6e21cea093b9 rdf:first sg:person.01116715171.42
    76 rdf:rest Ne3e8a1bd607d4b2e902fff5deea99f4e
    77 N47700b59c9084630a62a042236a91830 schema:issueNumber 11
    78 rdf:type schema:PublicationIssue
    79 N4be2d9d66bcf4bd0ae4aebe8d2b6d1b3 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N4dfb368f2b694b4bb1a757c976c14f52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Surface Properties
    83 rdf:type schema:DefinedTerm
    84 N50ca401bc88c4b4cb06d480fcd3ccd94 schema:name dimensions_id
    85 schema:value pub.1045826707
    86 rdf:type schema:PropertyValue
    87 N5f34d7dbe26441428eead22784c46899 schema:name readcube_id
    88 schema:value da4abb05bc86eb563d9dcd791077574f39eceb281f365abc48c0dc34002faac2
    89 rdf:type schema:PropertyValue
    90 N5f743a7b75954c43936374c87d7919bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name History, Ancient
    92 rdf:type schema:DefinedTerm
    93 N6d5d2f057aec47648a5c787400984569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Nanotechnology
    95 rdf:type schema:DefinedTerm
    96 N81d2865b33c94ee7ae2cbb6ef8a73675 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Cobalt
    98 rdf:type schema:DefinedTerm
    99 N88cdb08414bd4110b1a254e05987d5d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Membranes, Artificial
    101 rdf:type schema:DefinedTerm
    102 N90fdc9490bc44eeba62a0f3648163efe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Gases
    104 rdf:type schema:DefinedTerm
    105 N9f29ce6483354da193959fb24f9e39fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Copper
    107 rdf:type schema:DefinedTerm
    108 Nb1b05bf66e2348df8b6fdf787962ebac schema:name nlm_unique_id
    109 schema:value 101155473
    110 rdf:type schema:PropertyValue
    111 Nbfd7278dd6c74a4c9821e81b2db59ec4 schema:name doi
    112 schema:value 10.1038/nmat1000
    113 rdf:type schema:PropertyValue
    114 Nc52fed415f9a43019e8955f54b1bcfab schema:volumeNumber 2
    115 rdf:type schema:PublicationVolume
    116 Nceacc1073aa3498e9e817fd85ea6ba9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Metals
    118 rdf:type schema:DefinedTerm
    119 Nd07d9561662c4949a40101d2eb8f7b13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Molecular Conformation
    121 rdf:type schema:DefinedTerm
    122 Ndd6016e26783488e888a9552f63764cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Transition Elements
    124 rdf:type schema:DefinedTerm
    125 Ne3e8a1bd607d4b2e902fff5deea99f4e rdf:first sg:person.01021632321.10
    126 rdf:rest N0a8d4f232fe64d57945ad1f2f055d8ea
    127 Ne79157b796db429b84366250a39a2176 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Macromolecular Substances
    129 rdf:type schema:DefinedTerm
    130 Nf2782b533299426ca20f2e31b62fbecf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Hot Temperature
    132 rdf:type schema:DefinedTerm
    133 Nfeab3af4c8c945e3b9a295af3c39061c schema:name pubmed_id
    134 schema:value 14578877
    135 rdf:type schema:PropertyValue
    136 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Chemical Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Physical Chemistry (incl. Structural)
    141 rdf:type schema:DefinedTerm
    142 sg:grant.3476114 http://pending.schema.org/fundedItem sg:pub.10.1038/nmat1000
    143 rdf:type schema:MonetaryGrant
    144 sg:journal.1031408 schema:issn 1476-1122
    145 1476-4660
    146 schema:name Nature Materials
    147 rdf:type schema:Periodical
    148 sg:person.01021632321.10 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    149 schema:familyName Rahtu
    150 schema:givenName Antti
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021632321.10
    152 rdf:type schema:Person
    153 sg:person.01116715171.42 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    154 schema:familyName Lim
    155 schema:givenName Booyong S.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116715171.42
    157 rdf:type schema:Person
    158 sg:person.012651422732.40 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    159 schema:familyName Gordon
    160 schema:givenName Roy G.
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651422732.40
    162 rdf:type schema:Person
    163 sg:pub.10.1007/978-94-009-0389-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108494442
    164 https://doi.org/10.1007/978-94-009-0389-0
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/35023243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007376724
    167 https://doi.org/10.1038/35023243
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/cvde.200290007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029705092
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1002/cvde.200390005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017605080
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0039-6028(01)00969-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033953362
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0040-6090(99)01076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002292166
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1021/cm021333t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055409620
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1021/ic0345424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055555841
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1021/om9706323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056284390
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1063/1.1565699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720848
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1116/1.1305809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062164106
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1116/1.1469009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062167248
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1116/1.1486233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062167395
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1116/1.1513636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062167997
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1126/science.1073552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049194967
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1149/1.1838738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049978150
    196 rdf:type schema:CreativeWork
    197 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    198 schema:name Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
    199 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...