Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12-21

AUTHORS

Christina M. Patricola, Ping Chang, R. Saravanan

ABSTRACT

El Niño/Southern Oscillation, the dominant mode of interannual climate variability, strongly influences tropical cyclone activity. During canonical El Niño, the warm phase, Atlantic tropical cyclones are suppressed. However, the past decades have witnessed different El Niño characteristics, ranging from warming over the east Pacific cold tongue in canonical events to warming near the warm pool, known as warm pool El Niño or central Pacific El Niño. Global climate models project possible future increases in intensity of warm pool El Niño. Here we use a climate model at a resolution sufficient to explicitly simulate tropical cyclones to investigate how these flavours of El Niño may affect such cyclones. We show that Atlantic tropical cyclones are suppressed regardless of El Niño type. For the warmest 10% of each El Niño flavour, warm pool El Niño is substantially less effective at suppressing Atlantic tropical cyclones than cold tongue El Niño. However, for the same absolute warming intensity, the opposite is true. This is because less warming is required near the warm pool to satisfy the sea surface temperature threshold for deep convection, which leads to tropical cyclone suppression through vertical wind shear enhancements. We conclude that an understanding of future changes in not only location, but also intensity and frequency, of El Niño is important for forecasts and projections of Atlantic tropical cyclone activity. More... »

PAGES

155-160

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/ngeo2624

DOI

http://dx.doi.org/10.1038/ngeo2624

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028845787


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patricola", 
        "givenName": "Christina M.", 
        "id": "sg:person.01023600734.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023600734.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China", 
          "id": "http://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA", 
            "Department of Oceanography, Texas A&M University, College Station, Texas 77843, USA", 
            "Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Ping", 
        "id": "sg:person.01165150352.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165150352.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saravanan", 
        "givenName": "R.", 
        "id": "sg:person.0654032623.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654032623.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ngeo1008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032265349", 
          "https://doi.org/10.1038/ngeo1008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044903847", 
          "https://doi.org/10.1038/nature08316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/312141a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035973890", 
          "https://doi.org/10.1038/312141a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005416332322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007797290", 
          "https://doi.org/10.1023/a:1005416332322"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12-21", 
    "datePublishedReg": "2015-12-21", 
    "description": "El Ni\u00f1o/Southern Oscillation, the dominant mode of interannual climate variability, strongly influences tropical cyclone activity. During canonical El Ni\u00f1o, the warm phase, Atlantic tropical cyclones are suppressed. However, the past decades have witnessed different El Ni\u00f1o characteristics, ranging from warming over the east Pacific cold tongue in canonical events to warming near the warm pool, known as warm pool El Ni\u00f1o or central Pacific El Ni\u00f1o. Global climate models project possible future increases in intensity of warm pool El Ni\u00f1o. Here we use a climate model at a resolution sufficient to explicitly simulate tropical cyclones to investigate how these flavours of El Ni\u00f1o may affect such cyclones. We show that Atlantic tropical cyclones are suppressed regardless of El Ni\u00f1o type. For the warmest 10% of each El Ni\u00f1o flavour, warm pool El Ni\u00f1o is substantially less effective at suppressing Atlantic tropical cyclones than cold tongue El Ni\u00f1o. However, for the same absolute warming intensity, the opposite is true. This is because less warming is required near the warm pool to satisfy the sea surface temperature threshold for deep convection, which leads to tropical cyclone suppression through vertical wind shear enhancements. We conclude that an understanding of future changes in not only location, but also intensity and frequency, of El Ni\u00f1o is important for forecasts and projections of Atlantic tropical cyclone activity.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/ngeo2624", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3490160", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3000154", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040470", 
        "issn": [
          "1752-0894", 
          "1752-0908"
        ], 
        "name": "Nature Geoscience", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "warm pool El Ni\u00f1o", 
      "Atlantic tropical cyclones", 
      "tropical cyclone activity", 
      "El Ni\u00f1o", 
      "tropical cyclones", 
      "warm pool", 
      "cyclone activity", 
      "climate models", 
      "El Ni\u00f1o/Southern Oscillation", 
      "sea surface temperature threshold", 
      "east Pacific cold tongue", 
      "central Pacific El Ni\u00f1o", 
      "Atlantic tropical cyclone activity", 
      "cold tongue El Ni\u00f1o", 
      "Pacific cold tongue", 
      "El Ni\u00f1o flavors", 
      "El Ni\u00f1o characteristics", 
      "Pacific El Ni\u00f1o", 
      "interannual climate variability", 
      "canonical El Ni\u00f1o", 
      "global climate models", 
      "El Ni\u00f1o types", 
      "possible future increases", 
      "cold tongue", 
      "Southern Oscillation", 
      "deep convection", 
      "climate variability", 
      "warm phase", 
      "less warming", 
      "such cyclones", 
      "canonical events", 
      "Ni\u00f1o", 
      "future changes", 
      "cyclones", 
      "warming intensity", 
      "future increases", 
      "dominant mode", 
      "only location", 
      "temperature threshold", 
      "shear enhancement", 
      "warming", 
      "forecasts", 
      "convection", 
      "variability", 
      "intensity", 
      "oscillations", 
      "pool", 
      "events", 
      "projections", 
      "past decade", 
      "location", 
      "resolution", 
      "model", 
      "changes", 
      "decades", 
      "tongue", 
      "phase", 
      "understanding", 
      "opposite", 
      "characteristics", 
      "activity", 
      "increase", 
      "threshold", 
      "types", 
      "frequency", 
      "degree", 
      "mode", 
      "enhancement", 
      "suppression", 
      "flavor"
    ], 
    "name": "Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Ni\u00f1o", 
    "pagination": "155-160", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028845787"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/ngeo2624"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/ngeo2624", 
      "https://app.dimensions.ai/details/publication/pub.1028845787"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_648.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/ngeo2624"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      99 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/ngeo2624 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N046d3e27d9764c52b12d631e50f733a5
5 schema:citation sg:pub.10.1023/a:1005416332322
6 sg:pub.10.1038/312141a0
7 sg:pub.10.1038/nature08316
8 sg:pub.10.1038/ngeo1008
9 schema:datePublished 2015-12-21
10 schema:datePublishedReg 2015-12-21
11 schema:description El Niño/Southern Oscillation, the dominant mode of interannual climate variability, strongly influences tropical cyclone activity. During canonical El Niño, the warm phase, Atlantic tropical cyclones are suppressed. However, the past decades have witnessed different El Niño characteristics, ranging from warming over the east Pacific cold tongue in canonical events to warming near the warm pool, known as warm pool El Niño or central Pacific El Niño. Global climate models project possible future increases in intensity of warm pool El Niño. Here we use a climate model at a resolution sufficient to explicitly simulate tropical cyclones to investigate how these flavours of El Niño may affect such cyclones. We show that Atlantic tropical cyclones are suppressed regardless of El Niño type. For the warmest 10% of each El Niño flavour, warm pool El Niño is substantially less effective at suppressing Atlantic tropical cyclones than cold tongue El Niño. However, for the same absolute warming intensity, the opposite is true. This is because less warming is required near the warm pool to satisfy the sea surface temperature threshold for deep convection, which leads to tropical cyclone suppression through vertical wind shear enhancements. We conclude that an understanding of future changes in not only location, but also intensity and frequency, of El Niño is important for forecasts and projections of Atlantic tropical cyclone activity.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N2ea02670a0d14a82841d6ace571f596c
15 Ndf92424437624b828feb4210ced960ed
16 sg:journal.1040470
17 schema:keywords Atlantic tropical cyclone activity
18 Atlantic tropical cyclones
19 El Niño
20 El Niño characteristics
21 El Niño flavors
22 El Niño types
23 El Niño/Southern Oscillation
24 Niño
25 Pacific El Niño
26 Pacific cold tongue
27 Southern Oscillation
28 activity
29 canonical El Niño
30 canonical events
31 central Pacific El Niño
32 changes
33 characteristics
34 climate models
35 climate variability
36 cold tongue
37 cold tongue El Niño
38 convection
39 cyclone activity
40 cyclones
41 decades
42 deep convection
43 degree
44 dominant mode
45 east Pacific cold tongue
46 enhancement
47 events
48 flavor
49 forecasts
50 frequency
51 future changes
52 future increases
53 global climate models
54 increase
55 intensity
56 interannual climate variability
57 less warming
58 location
59 mode
60 model
61 only location
62 opposite
63 oscillations
64 past decade
65 phase
66 pool
67 possible future increases
68 projections
69 resolution
70 sea surface temperature threshold
71 shear enhancement
72 such cyclones
73 suppression
74 temperature threshold
75 threshold
76 tongue
77 tropical cyclone activity
78 tropical cyclones
79 types
80 understanding
81 variability
82 warm phase
83 warm pool
84 warm pool El Niño
85 warming
86 warming intensity
87 schema:name Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño
88 schema:pagination 155-160
89 schema:productId N60236f0f392a4964a6eebf5d779d22d7
90 Nfb784306e9554971b51704b5ba6cf1b3
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028845787
92 https://doi.org/10.1038/ngeo2624
93 schema:sdDatePublished 2022-08-04T17:01
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N6e1fb24bb5334d1386c4e2b01f82cb0f
96 schema:url https://doi.org/10.1038/ngeo2624
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N046d3e27d9764c52b12d631e50f733a5 rdf:first sg:person.01023600734.90
101 rdf:rest N049c975e5bac448285df8cd690416019
102 N049c975e5bac448285df8cd690416019 rdf:first sg:person.01165150352.10
103 rdf:rest Nef64d27ff70c4529aa4413f59ca3252f
104 N2ea02670a0d14a82841d6ace571f596c schema:volumeNumber 9
105 rdf:type schema:PublicationVolume
106 N60236f0f392a4964a6eebf5d779d22d7 schema:name doi
107 schema:value 10.1038/ngeo2624
108 rdf:type schema:PropertyValue
109 N6e1fb24bb5334d1386c4e2b01f82cb0f schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Ndf92424437624b828feb4210ced960ed schema:issueNumber 2
112 rdf:type schema:PublicationIssue
113 Nef64d27ff70c4529aa4413f59ca3252f rdf:first sg:person.0654032623.22
114 rdf:rest rdf:nil
115 Nfb784306e9554971b51704b5ba6cf1b3 schema:name dimensions_id
116 schema:value pub.1028845787
117 rdf:type schema:PropertyValue
118 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
119 schema:name Earth Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
122 schema:name Atmospheric Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
125 schema:name Oceanography
126 rdf:type schema:DefinedTerm
127 sg:grant.3000154 http://pending.schema.org/fundedItem sg:pub.10.1038/ngeo2624
128 rdf:type schema:MonetaryGrant
129 sg:grant.3490160 http://pending.schema.org/fundedItem sg:pub.10.1038/ngeo2624
130 rdf:type schema:MonetaryGrant
131 sg:journal.1040470 schema:issn 1752-0894
132 1752-0908
133 schema:name Nature Geoscience
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01023600734.90 schema:affiliation grid-institutes:grid.264756.4
137 schema:familyName Patricola
138 schema:givenName Christina M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023600734.90
140 rdf:type schema:Person
141 sg:person.01165150352.10 schema:affiliation grid-institutes:grid.4422.0
142 schema:familyName Chang
143 schema:givenName Ping
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165150352.10
145 rdf:type schema:Person
146 sg:person.0654032623.22 schema:affiliation grid-institutes:grid.264756.4
147 schema:familyName Saravanan
148 schema:givenName R.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654032623.22
150 rdf:type schema:Person
151 sg:pub.10.1023/a:1005416332322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007797290
152 https://doi.org/10.1023/a:1005416332322
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/312141a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035973890
155 https://doi.org/10.1038/312141a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature08316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044903847
158 https://doi.org/10.1038/nature08316
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ngeo1008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032265349
161 https://doi.org/10.1038/ngeo1008
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.264756.4 schema:alternateName Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA
164 schema:name Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA
165 rdf:type schema:Organization
166 grid-institutes:grid.4422.0 schema:alternateName Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China
167 schema:name Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA
168 Department of Oceanography, Texas A&M University, College Station, Texas 77843, USA
169 Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...