Ontology type: schema:ScholarlyArticle
2015-12-21
AUTHORSChristina M. Patricola, Ping Chang, R. Saravanan
ABSTRACTEl Niño/Southern Oscillation, the dominant mode of interannual climate variability, strongly influences tropical cyclone activity. During canonical El Niño, the warm phase, Atlantic tropical cyclones are suppressed. However, the past decades have witnessed different El Niño characteristics, ranging from warming over the east Pacific cold tongue in canonical events to warming near the warm pool, known as warm pool El Niño or central Pacific El Niño. Global climate models project possible future increases in intensity of warm pool El Niño. Here we use a climate model at a resolution sufficient to explicitly simulate tropical cyclones to investigate how these flavours of El Niño may affect such cyclones. We show that Atlantic tropical cyclones are suppressed regardless of El Niño type. For the warmest 10% of each El Niño flavour, warm pool El Niño is substantially less effective at suppressing Atlantic tropical cyclones than cold tongue El Niño. However, for the same absolute warming intensity, the opposite is true. This is because less warming is required near the warm pool to satisfy the sea surface temperature threshold for deep convection, which leads to tropical cyclone suppression through vertical wind shear enhancements. We conclude that an understanding of future changes in not only location, but also intensity and frequency, of El Niño is important for forecasts and projections of Atlantic tropical cyclone activity. More... »
PAGES155-160
http://scigraph.springernature.com/pub.10.1038/ngeo2624
DOIhttp://dx.doi.org/10.1038/ngeo2624
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028845787
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oceanography",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA",
"id": "http://www.grid.ac/institutes/grid.264756.4",
"name": [
"Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA"
],
"type": "Organization"
},
"familyName": "Patricola",
"givenName": "Christina M.",
"id": "sg:person.01023600734.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023600734.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China",
"id": "http://www.grid.ac/institutes/grid.4422.0",
"name": [
"Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA",
"Department of Oceanography, Texas A&M University, College Station, Texas 77843, USA",
"Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China"
],
"type": "Organization"
},
"familyName": "Chang",
"givenName": "Ping",
"id": "sg:person.01165150352.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165150352.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA",
"id": "http://www.grid.ac/institutes/grid.264756.4",
"name": [
"Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA"
],
"type": "Organization"
},
"familyName": "Saravanan",
"givenName": "R.",
"id": "sg:person.0654032623.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654032623.22"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/ngeo1008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032265349",
"https://doi.org/10.1038/ngeo1008"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature08316",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044903847",
"https://doi.org/10.1038/nature08316"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/312141a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035973890",
"https://doi.org/10.1038/312141a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1005416332322",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007797290",
"https://doi.org/10.1023/a:1005416332322"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-12-21",
"datePublishedReg": "2015-12-21",
"description": "El Ni\u00f1o/Southern Oscillation, the dominant mode of interannual climate variability, strongly influences tropical cyclone activity. During canonical El Ni\u00f1o, the warm phase, Atlantic tropical cyclones are suppressed. However, the past decades have witnessed different El Ni\u00f1o characteristics, ranging from warming over the east Pacific cold tongue in canonical events to warming near the warm pool, known as warm pool El Ni\u00f1o or central Pacific El Ni\u00f1o. Global climate models project possible future increases in intensity of warm pool El Ni\u00f1o. Here we use a climate model at a resolution sufficient to explicitly simulate tropical cyclones to investigate how these flavours of El Ni\u00f1o may affect such cyclones. We show that Atlantic tropical cyclones are suppressed regardless of El Ni\u00f1o type. For the warmest 10% of each El Ni\u00f1o flavour, warm pool El Ni\u00f1o is substantially less effective at suppressing Atlantic tropical cyclones than cold tongue El Ni\u00f1o. However, for the same absolute warming intensity, the opposite is true. This is because less warming is required near the warm pool to satisfy the sea surface temperature threshold for deep convection, which leads to tropical cyclone suppression through vertical wind shear enhancements. We conclude that an understanding of future changes in not only location, but also intensity and frequency, of El Ni\u00f1o is important for forecasts and projections of Atlantic tropical cyclone activity.",
"genre": "article",
"id": "sg:pub.10.1038/ngeo2624",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.3490160",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3000154",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1040470",
"issn": [
"1752-0894",
"1752-0908"
],
"name": "Nature Geoscience",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"warm pool El Ni\u00f1o",
"Atlantic tropical cyclones",
"tropical cyclone activity",
"El Ni\u00f1o",
"tropical cyclones",
"warm pool",
"cyclone activity",
"climate models",
"El Ni\u00f1o/Southern Oscillation",
"sea surface temperature threshold",
"east Pacific cold tongue",
"central Pacific El Ni\u00f1o",
"Atlantic tropical cyclone activity",
"cold tongue El Ni\u00f1o",
"Pacific cold tongue",
"El Ni\u00f1o flavors",
"El Ni\u00f1o characteristics",
"Pacific El Ni\u00f1o",
"interannual climate variability",
"canonical El Ni\u00f1o",
"global climate models",
"El Ni\u00f1o types",
"possible future increases",
"cold tongue",
"Southern Oscillation",
"deep convection",
"climate variability",
"warm phase",
"less warming",
"such cyclones",
"canonical events",
"Ni\u00f1o",
"future changes",
"cyclones",
"warming intensity",
"future increases",
"dominant mode",
"only location",
"temperature threshold",
"shear enhancement",
"warming",
"forecasts",
"convection",
"variability",
"intensity",
"oscillations",
"pool",
"events",
"projections",
"past decade",
"location",
"resolution",
"model",
"changes",
"decades",
"tongue",
"phase",
"understanding",
"opposite",
"characteristics",
"activity",
"increase",
"threshold",
"types",
"frequency",
"degree",
"mode",
"enhancement",
"suppression",
"flavor"
],
"name": "Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Ni\u00f1o",
"pagination": "155-160",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028845787"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/ngeo2624"
]
}
],
"sameAs": [
"https://doi.org/10.1038/ngeo2624",
"https://app.dimensions.ai/details/publication/pub.1028845787"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_648.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/ngeo2624"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/ngeo2624'
This table displays all metadata directly associated to this object as RDF triples.
170 TRIPLES
21 PREDICATES
99 URIs
86 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1038/ngeo2624 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | ″ | anzsrc-for:0405 |
4 | ″ | schema:author | Na84f29d57c594fb1b7e808691b9c0ccf |
5 | ″ | schema:citation | sg:pub.10.1023/a:1005416332322 |
6 | ″ | ″ | sg:pub.10.1038/312141a0 |
7 | ″ | ″ | sg:pub.10.1038/nature08316 |
8 | ″ | ″ | sg:pub.10.1038/ngeo1008 |
9 | ″ | schema:datePublished | 2015-12-21 |
10 | ″ | schema:datePublishedReg | 2015-12-21 |
11 | ″ | schema:description | El Niño/Southern Oscillation, the dominant mode of interannual climate variability, strongly influences tropical cyclone activity. During canonical El Niño, the warm phase, Atlantic tropical cyclones are suppressed. However, the past decades have witnessed different El Niño characteristics, ranging from warming over the east Pacific cold tongue in canonical events to warming near the warm pool, known as warm pool El Niño or central Pacific El Niño. Global climate models project possible future increases in intensity of warm pool El Niño. Here we use a climate model at a resolution sufficient to explicitly simulate tropical cyclones to investigate how these flavours of El Niño may affect such cyclones. We show that Atlantic tropical cyclones are suppressed regardless of El Niño type. For the warmest 10% of each El Niño flavour, warm pool El Niño is substantially less effective at suppressing Atlantic tropical cyclones than cold tongue El Niño. However, for the same absolute warming intensity, the opposite is true. This is because less warming is required near the warm pool to satisfy the sea surface temperature threshold for deep convection, which leads to tropical cyclone suppression through vertical wind shear enhancements. We conclude that an understanding of future changes in not only location, but also intensity and frequency, of El Niño is important for forecasts and projections of Atlantic tropical cyclone activity. |
12 | ″ | schema:genre | article |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N2cd16e7890254b2f8d0eddf868e69f4c |
15 | ″ | ″ | N5b58db7e84f945f8b5b4f733148941da |
16 | ″ | ″ | sg:journal.1040470 |
17 | ″ | schema:keywords | Atlantic tropical cyclone activity |
18 | ″ | ″ | Atlantic tropical cyclones |
19 | ″ | ″ | El Niño |
20 | ″ | ″ | El Niño characteristics |
21 | ″ | ″ | El Niño flavors |
22 | ″ | ″ | El Niño types |
23 | ″ | ″ | El Niño/Southern Oscillation |
24 | ″ | ″ | Niño |
25 | ″ | ″ | Pacific El Niño |
26 | ″ | ″ | Pacific cold tongue |
27 | ″ | ″ | Southern Oscillation |
28 | ″ | ″ | activity |
29 | ″ | ″ | canonical El Niño |
30 | ″ | ″ | canonical events |
31 | ″ | ″ | central Pacific El Niño |
32 | ″ | ″ | changes |
33 | ″ | ″ | characteristics |
34 | ″ | ″ | climate models |
35 | ″ | ″ | climate variability |
36 | ″ | ″ | cold tongue |
37 | ″ | ″ | cold tongue El Niño |
38 | ″ | ″ | convection |
39 | ″ | ″ | cyclone activity |
40 | ″ | ″ | cyclones |
41 | ″ | ″ | decades |
42 | ″ | ″ | deep convection |
43 | ″ | ″ | degree |
44 | ″ | ″ | dominant mode |
45 | ″ | ″ | east Pacific cold tongue |
46 | ″ | ″ | enhancement |
47 | ″ | ″ | events |
48 | ″ | ″ | flavor |
49 | ″ | ″ | forecasts |
50 | ″ | ″ | frequency |
51 | ″ | ″ | future changes |
52 | ″ | ″ | future increases |
53 | ″ | ″ | global climate models |
54 | ″ | ″ | increase |
55 | ″ | ″ | intensity |
56 | ″ | ″ | interannual climate variability |
57 | ″ | ″ | less warming |
58 | ″ | ″ | location |
59 | ″ | ″ | mode |
60 | ″ | ″ | model |
61 | ″ | ″ | only location |
62 | ″ | ″ | opposite |
63 | ″ | ″ | oscillations |
64 | ″ | ″ | past decade |
65 | ″ | ″ | phase |
66 | ″ | ″ | pool |
67 | ″ | ″ | possible future increases |
68 | ″ | ″ | projections |
69 | ″ | ″ | resolution |
70 | ″ | ″ | sea surface temperature threshold |
71 | ″ | ″ | shear enhancement |
72 | ″ | ″ | such cyclones |
73 | ″ | ″ | suppression |
74 | ″ | ″ | temperature threshold |
75 | ″ | ″ | threshold |
76 | ″ | ″ | tongue |
77 | ″ | ″ | tropical cyclone activity |
78 | ″ | ″ | tropical cyclones |
79 | ″ | ″ | types |
80 | ″ | ″ | understanding |
81 | ″ | ″ | variability |
82 | ″ | ″ | warm phase |
83 | ″ | ″ | warm pool |
84 | ″ | ″ | warm pool El Niño |
85 | ″ | ″ | warming |
86 | ″ | ″ | warming intensity |
87 | ″ | schema:name | Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño |
88 | ″ | schema:pagination | 155-160 |
89 | ″ | schema:productId | N2180ccca7ec7484a8a0dc5c98fab4020 |
90 | ″ | ″ | N7be0bb7bb47445c09a974da1b0a0d7bd |
91 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028845787 |
92 | ″ | ″ | https://doi.org/10.1038/ngeo2624 |
93 | ″ | schema:sdDatePublished | 2022-08-04T17:01 |
94 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
95 | ″ | schema:sdPublisher | Nfe6bf89e7a5e46a0b76b9644963992e0 |
96 | ″ | schema:url | https://doi.org/10.1038/ngeo2624 |
97 | ″ | sgo:license | sg:explorer/license/ |
98 | ″ | sgo:sdDataset | articles |
99 | ″ | rdf:type | schema:ScholarlyArticle |
100 | N2180ccca7ec7484a8a0dc5c98fab4020 | schema:name | dimensions_id |
101 | ″ | schema:value | pub.1028845787 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | N2cd16e7890254b2f8d0eddf868e69f4c | schema:issueNumber | 2 |
104 | ″ | rdf:type | schema:PublicationIssue |
105 | N5b58db7e84f945f8b5b4f733148941da | schema:volumeNumber | 9 |
106 | ″ | rdf:type | schema:PublicationVolume |
107 | N7be0bb7bb47445c09a974da1b0a0d7bd | schema:name | doi |
108 | ″ | schema:value | 10.1038/ngeo2624 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | Na84259ea62a040f1a74531886eba1f48 | rdf:first | sg:person.01165150352.10 |
111 | ″ | rdf:rest | Nc3e2e81eaa0145d88c08c6255abaeda1 |
112 | Na84f29d57c594fb1b7e808691b9c0ccf | rdf:first | sg:person.01023600734.90 |
113 | ″ | rdf:rest | Na84259ea62a040f1a74531886eba1f48 |
114 | Nc3e2e81eaa0145d88c08c6255abaeda1 | rdf:first | sg:person.0654032623.22 |
115 | ″ | rdf:rest | rdf:nil |
116 | Nfe6bf89e7a5e46a0b76b9644963992e0 | schema:name | Springer Nature - SN SciGraph project |
117 | ″ | rdf:type | schema:Organization |
118 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Earth Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Atmospheric Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0405 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Oceanography |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | sg:grant.3000154 | http://pending.schema.org/fundedItem | sg:pub.10.1038/ngeo2624 |
128 | ″ | rdf:type | schema:MonetaryGrant |
129 | sg:grant.3490160 | http://pending.schema.org/fundedItem | sg:pub.10.1038/ngeo2624 |
130 | ″ | rdf:type | schema:MonetaryGrant |
131 | sg:journal.1040470 | schema:issn | 1752-0894 |
132 | ″ | ″ | 1752-0908 |
133 | ″ | schema:name | Nature Geoscience |
134 | ″ | schema:publisher | Springer Nature |
135 | ″ | rdf:type | schema:Periodical |
136 | sg:person.01023600734.90 | schema:affiliation | grid-institutes:grid.264756.4 |
137 | ″ | schema:familyName | Patricola |
138 | ″ | schema:givenName | Christina M. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023600734.90 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.01165150352.10 | schema:affiliation | grid-institutes:grid.4422.0 |
142 | ″ | schema:familyName | Chang |
143 | ″ | schema:givenName | Ping |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165150352.10 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.0654032623.22 | schema:affiliation | grid-institutes:grid.264756.4 |
147 | ″ | schema:familyName | Saravanan |
148 | ″ | schema:givenName | R. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654032623.22 |
150 | ″ | rdf:type | schema:Person |
151 | sg:pub.10.1023/a:1005416332322 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007797290 |
152 | ″ | ″ | https://doi.org/10.1023/a:1005416332322 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1038/312141a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035973890 |
155 | ″ | ″ | https://doi.org/10.1038/312141a0 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | sg:pub.10.1038/nature08316 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044903847 |
158 | ″ | ″ | https://doi.org/10.1038/nature08316 |
159 | ″ | rdf:type | schema:CreativeWork |
160 | sg:pub.10.1038/ngeo1008 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032265349 |
161 | ″ | ″ | https://doi.org/10.1038/ngeo1008 |
162 | ″ | rdf:type | schema:CreativeWork |
163 | grid-institutes:grid.264756.4 | schema:alternateName | Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA |
164 | ″ | schema:name | Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA |
165 | ″ | rdf:type | schema:Organization |
166 | grid-institutes:grid.4422.0 | schema:alternateName | Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China |
167 | ″ | schema:name | Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA |
168 | ″ | ″ | Department of Oceanography, Texas A&M University, College Station, Texas 77843, USA |
169 | ″ | ″ | Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China |
170 | ″ | rdf:type | schema:Organization |